Citation: | Huang Lele, Wang Huiwen, Zhu Jiaet al. Functional principal component regression for continuous spectra data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 792-796. doi: 10.13700/j.bh.1001-5965.2013.0409(in Chinese) |
[1] |
Tarachiwin L, Ute K,Kobayashi A,et al.1H NMR based metabolic profiling in the evaluation of Japanese green tea quality[J].Journal of Agricultural and Food Chemistry,2007,55(23):9330-9336
|
[2] |
Ohno A, Oka K,Sakuma C,et al.Characterization of tea cultivated at four different altitudes using 1H NMR analysis coupled with multivariate statistics[J].Journal of Agricultural and Food Chemistry,2011,59(10):5181-5187
|
[3] |
Filzmoser P, Serneels S,Croux C,et al.Robust multivariate methods:the projection pursuit approach[M].New York:Springer,2006:270-277
|
[4] |
Serneels S, Croux C,Filzmoser P,et al.Partial robust M-regression[J].Chemometrics and Intelligent Laboratory Systems,2005,79(1):55-64
|
[5] |
Lee J E, Lee B J,Chung J O,et al.Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites:a(1)H NMR-based metabolomics study[J].Journal of Agricultural and Food Chemistry,2010,58(19):10582-10589
|
[6] |
Ramsay J O, Silverman B W.Functional data analysis[M].New York:Springer,1997
|
[7] |
Cai T T, Hall P.Prediction in functional linear regression[J].Annals of Statistics,2006,34(5):2159-2179
|
[8] |
James G M, Hastie T J,Sugar C A.Principal component models for sparse functional data[J].Biometrika,2000,87(3):587-602
|
[9] |
Cardot H, Crambes C,Sarda P.Quantile regression when the covariates are functions[J].Journal of Nonparametric Statistics,2005,17(7):841-856
|
[10] |
Hall P, Horowitz J L.Methodology and convergence rates for functional linear regression[J].The Annals of Statistics,2007,35(1):70-91
|
[11] |
Crambes C, Kneip A,Sarda P.Smoothing splines estimators for functional linear regression[J].The Annals of Statistics,2009,37(1):35-72
|
[12] |
Zhu J. Quantitative electron microscopy X-ray analysis (SEM-EDX) using Monte Carlo simulation and partial least squares regression[D].Antwerpen:University of Antwerp,2005
|