Volume 40 Issue 8
Aug.  2014
Turn off MathJax
Article Contents
Meng Fanzhi, Shi Pengliang, Ou Ganget al. Differential correction technique to the rotation error in autonomous navigation constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8): 1033-1037. doi: 10.13700/j.bh.1001-5965.2013.0544(in Chinese)
Citation: Meng Fanzhi, Shi Pengliang, Ou Ganget al. Differential correction technique to the rotation error in autonomous navigation constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8): 1033-1037. doi: 10.13700/j.bh.1001-5965.2013.0544(in Chinese)

Differential correction technique to the rotation error in autonomous navigation constellation

doi: 10.13700/j.bh.1001-5965.2013.0544
  • Received Date: 24 Sep 2013
  • Publish Date: 20 Aug 2014
  • The rotation of the autonomous navigation constellation is unobservable while using inter-satellite measurements only. Once the rotation occurs, errors will be introduced to the positioning results of ground users. The positioning error model of ground users was established to solve this problem. According to the positioning principle and spherical coordinates transformation, the relationship was mathematically proved between the rotation error of the constellation and the positioning error of ground users. Based on this relationship, a differential correction technique to the rotation error was proposed, including the structure and correction algorithm of the technique. Simulations of the Walker 12/3/1 constellation indicate that the constellation's rotation error will cause the longitude of the ground user to have the same error. After applying the differential correction technique, the ground users will effectively correct this error. While the rotation error is less than 1'(equivalent to a 31 m horizontal error in the equator), the user's horizontal error is less than 1.5 m and the vertical error is less than 0.003 m after differential correcting.

     

  • loading
  • [1]
    Ananda M P, Bernstein H,Cunningham K E,et al.Global positioning system (GPS) autonomous navigation[C]//IEEE Position Location and Navigation Symposium.Piscataway,NJ:IEEE,1990:497-508
    [2]
    Rajan J A. Highlights of GPS Ⅱ-R autonomous navigation[C]//Proceedings of the 58th Annual Meeting of The Institute of Navigation and CIGTF 21st Guidance Test Symposium.Manassas,VA:The Institute of Navigation,2002:354-363
    [3]
    刘林,刘迎春. 关于星-星相对测量自主定轨中的亏秩问题[J].飞行器测控学报,2000,19(3):13-16 Liu Lin,Liu Yingchun.Rank deficient problem of inter-satellite measurement in autonomous orbit determination[J].Journal of Spacecraft TT&C Technology,2000,19(3):13-16(in Chinese)
    [4]
    陈金平,尤政, 焦文海.基于星间距离和方向观测的导航卫星自主定轨研究[J].宇航学报,2005,26(1):43-46 Chen Jinping,You Zheng,Jiao Wenhai.Research on autonav of navigation satellite constellation based on crosslink range and inter-satellites orientation observation[J].Journal of Astronautics,2005,26(1):43-46(in Chinese)
    [5]
    韩健,董绪荣,杨龙. 星间测向在提高星座自主性中的应用[J].装备指挥技术学院学报,2006,17(1):56-59 Han Jian,Dong Xurong,Yang Long.Application of crosslink orientation observation on increasing autonomy of constellation[J].Journal of the Academy of Equipment Command & Technology,2006,17(1):56-59(in Chinese)
    [6]
    尚琳,刘国华,刘善伍. 利用分步Kalman滤波器的自主定轨信息融合算法[J].宇航学报,2013,34(3):333-339 Shang Lin,Liu Guohua,Liu Shanwu.An information fusion algorithm of autonomous orbit determination based-on step Kalman filter[J].Journal of Astronautics,2013,34(3):333-339(in Chinese)
    [7]
    Shang L, Liu G H,Zhang R,et al.An information fusion algorithm for integrated autonomous orbit determination of navigation satellites[J].Acta Astronautica,2013,85:33-40
    [8]
    朱俊,陈忠贵,廖瑛. 基于脉冲星观测的导航星座自主导航数据融合方法[J].国防科技大学学报,2010,32(4):19-24 Zhu Jun,Chen Zhonggui,Liao Ying.A data fusion method for navigation constellation autonomous navigation based on X-ray pulsar[J].Journal of National University of Defense Technology,2010,32(4):19-24(in Chinese)
    [9]
    Wei E H, Jin S G,Zhang Q,et al.Autonomous navigation of Mars probe using X-ray pulsars:modeling and results[J].Advances in Space Research,2013,51(5):849-857
    [10]
    Woodfork D W. Use of X-ray pulsars for aiding GPS satellite orbit determination[D]. Wright-Patterson AFB:Air Force Institute of Technology,2005:2.1-2.34
    [11]
    Motta S, D'Aì A,Papitto A,et al.X-ray bursts and burst oscillations from the slowly spinning X-ray pulsar IGR J17480-2446 (Terzan 5)[J]. Monthly Notices of the Royal Astronomical Society,2011,414(2):1508-1516
    [12]
    Qian H M, Sun L,Cai J N,et al.A starlight refraction scheme with single star sensor used in autonomous satellite navigation system[J].Acta Astronautica,2014,96:45-52
    [13]
    Liu L, Zhang L,Zheng X,et al.Current situation and development trends of star sensor technology[J].Infrared and Laser Engineering,2007(z2):529-533
    [14]
    Braff R. Description of the FAA's local area augmentation system(LAAS)[J].Journal of the Institute of Navigation,1997,44(4):411-424
    [15]
    Bertiger W I, Bar-Sever Y E,Haines B J,et al.A real-time wide area differential GPS system[J].Journal of the Institute of Navigation,1997,44(4):433-448
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1253) PDF downloads(566) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return