Volume 41 Issue 6
Jun.  2015
Turn off MathJax
Article Contents
PAN Bing, JIANG Tianyun, WU Dafanget al. 3D thermal deformation measurement of superalloy honeycomb panels in time-varying thermal radiation environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 969-975. doi: 10.13700/j.bh.1001-5965.2014.0391(in Chinese)
Citation: PAN Bing, JIANG Tianyun, WU Dafanget al. 3D thermal deformation measurement of superalloy honeycomb panels in time-varying thermal radiation environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 969-975. doi: 10.13700/j.bh.1001-5965.2014.0391(in Chinese)

3D thermal deformation measurement of superalloy honeycomb panels in time-varying thermal radiation environment

doi: 10.13700/j.bh.1001-5965.2014.0391
  • Received Date: 01 Jul 2014
  • Publish Date: 20 Jun 2015
  • Superalloy honeycomb panels with the advantages of light weight, high strength and excellent heat-shielding properties have been widely used in the field of aeronautics and astronautics. Deformation measurement of superalloy honeycomb panels due to transient thermal loading is essential for the design of heat-shielding structures. Firstly, a self-developed infrared radiation transient aerodynamic heating simulation system was used to simulate conditions similar to transient aerodynamics service conditions and a novel active imaging three-dimensional digital image correlation (3D-DIC) method was used to measure 3D thermal deformation of a superalloy honeycomb panel sample with a size of 210 mm×210 mm at different times in time-varying thermal radiation environment. Secondly, to ensure the reliability of measurement by using 3D-DIC, a new technique for making large-area high-temperature speckle pattern on a test sample was proposed. The high-temperature speckle pattern stayed stable throughout the experiment and could be used as an effective carrier of thermal deformation. Finally, the largest warping displacement was also calculated by Hoff's equivalent stiffness theory. Study results indicate that in-plane thermal expansion is homogeneous when the panel is heated one-side by radiation heating, while the out-plane displacements show evident axisymmetric warp deformation with the largest warping displacement of approximate 1.6 mm at a temperature of 900℃. The experimental results agree well with theoretical predictions made by Hoff's equivalent stiffness theory.

     

  • loading
  • [1]
    吴大方, 郑力铭, 潘兵, 等.非线性热环境下高温合金蜂窝板隔热性能研究[J].力学学报, 2012, 44(2):297-307. Wu D F, Zheng L M, Pan B, et al.Research on heat-shielding properties of superalloy honeycomb panel for non-linear high temperature enviromment[J].Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2):297-307(in Chinese).
    [2]
    Zenkour A M, Alghamdi N A.Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads[J].Mechanics of Advanced Materials and Structures, 2010, 17(6):419-432.
    [3]
    刘艳辉, 杜鹏.金属蜂窝夹层板的研究进展[J].机械制造与自动化, 2013, 41(1):9-11. Liu Y H, Du P.Research process of metal honeycomb sandwich boards[J].Machine Building and Automation, 2013, 41(1):9-11(in Chinese).
    [4]
    刘艳辉, 童国权, 王辉, 等.GH99高温合金蜂窝板的制备及力学性能[J].机械工程材料, 2013, 37(2):82-85. Liu Y H, Tong G Q, Wang H, et al.Preparation and mechanical properties of GH99 high temperature alloy honeycomb plates[J].Materials for Mechanical Engineering, 2013, 37(2):82-85(in Chinese).
    [5]
    Ko W L.Heat shielding characteristics and thermostructural performance of a superalloy honeycomb sandwich thermal protection system (TPS), NASA/TP-2004-212024[R].Washington, D.C.:NASA, 2004.
    [6]
    Shiau L C, Kuo S Y.Thermal buckling of composite sandwich plates[J].Mechanics Based Design of Structures and Machines, 2004, 32(1):57-72.
    [7]
    Fatemi J, Lemmen M.Effective thermal mechanical properties of honeycomb core panels for hot structure applications[J].Journal of Spacecraft and Rockets, 2009, 46(3):514-525.
    [8]
    Chamis C C, Aiello R A, Murthy P L N.Composite sandwich thermostructural behavior:Computational simulation, AIAA-1986-0948[R].Reston:AIAA, 1986.
    [9]
    吴大方, 潘兵, 高镇同, 等.超高温, 大热流, 非线性气动热环境试验模拟及测试技术研究[J].实验力学, 2012, 27(3):255-271. Wu D F, Pan B, Gao Z T, et al.On the experimental simulation of ultra-high temperature high heat flux and nonlinear aerodynamic heating environment and thermal-machanical testing technique[J].Journal of Experimental Mechanics, 2012, 27(3):255-271(in Chinese).
    [10]
    Pan B, Wu D F, Yu L P.Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments[J].Applied Optics, 2012, 51(19):4409-4419.
    [11]
    Pan B, Wu D F, Wang Z Y, et al.High-temperature digital image correlation method for full-field deformation measurement at 1 200℃[J].Measurement Science and Technology, 2011, 22(1):015701.
    [12]
    吴大方, 房元鹏, 张敏.高速飞行器瞬态气动热试验模拟系统[J].航空计测技术, 2003, 23(1):9-11. Wu D F, Fang Y P, Zhang M.Experimental simulation system of transient aerodynamic heating for high-speed flight vehicle[J].Aviation Metrology and Measurement Technology, 2003, 23(1):9-11(in Chinese).
    [13]
    Sutton M A, Orteu J J, Schreier H W.Image correlation for shape, motion and deformation measurements[M].Berlin:Springer, 2009:175-208.
    [14]
    潘兵, 谢惠民, 李艳杰.用于物体表面形貌和变形测量的三维数字图像相关方法[J].实验力学, 2008, 22(6):556-567. Pan B, Xie H M, Li Y J.Three-dimensional digital image correlation method for shape and deformation measurement of an object surface[J].Journal of Experimental Mechanics, 2008, 22(6):556-567(in Chinese).
    [15]
    张广军.机器视觉[M].北京:科学出版社, 2005:122-125. Zhang G J.Machine vision[M].Beijing:Science Press, 2005:122-125(in Chinese).
    [16]
    Zhang Z Y.A flexible new technique for camera calibration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334.
    [17]
    Pan B, Qian K M, Xie H M, et al.Two-dimensional digital image correlation for in-plane displacement and strain measurement:A review[J].Measurement Science and Technology, 2009, 20(6):062001.
    [18]
    Pan B.Reliability-guided digital image correlation for image deformation measurement[J].Applied Optics, 2009, 48(8):1535-1542.
    [19]
    Pan B, Asundi A, Xie H M, et al.Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements[J].Optics and Lasers in Engineering, 2009, 47(7):865-874.
    [20]
    中国航空材料手册编辑委员会.中国航空材料手册(第二卷)[M].北京:中国标准出版社, 2002:194. China Aeronautical Materials Handbook Redaction Committee.China aeronautical materials handbook (VolumeⅡ)[M].Beijing:Standards Press of China, 2002:194(in Chinese).
    [21]
    李贤冰, 温激鸿, 郁殿龙, 等.蜂窝夹层板力学等效方法对比研究[J].玻璃钢/复合材料, 2012(S1):11-15. Li X B, Wen J H, Yu D L, et al.The comparative study of equivalent mechanical methods on honeycomb sandwich plate[J].Fiber Reinforced Plastics/Composites, 2012(S1):11-15(in Chinese).
    [22]
    竹内洋一郎.热应力[M].郭廷玮, 李安定, 译.北京:科学出版社, 1977:358-365. Ichiro T O. Thermal stress[M].Translated by Guo T W, Li A D.Beijing:Science Press, 1977:358-365(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1073) PDF downloads(513) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return