Volume 41 Issue 6
Jun.  2015
Turn off MathJax
Article Contents
LYU Lin, QUAN Wei. Modeling and analysis of gyroscope's random drift based on GP+GA method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1135-1140. doi: 10.13700/j.bh.1001-5965.2014.0440(in Chinese)
Citation: LYU Lin, QUAN Wei. Modeling and analysis of gyroscope's random drift based on GP+GA method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1135-1140. doi: 10.13700/j.bh.1001-5965.2014.0440(in Chinese)

Modeling and analysis of gyroscope's random drift based on GP+GA method

doi: 10.13700/j.bh.1001-5965.2014.0440
  • Received Date: 22 Jul 2014
  • Publish Date: 20 Jun 2015
  • Gyroscope is the key component in an inertial navigation system (INS). It depends on the precision of the INS. In order to improve the gyro's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of gyro's random drift, the nonlinear random drift error model based on genetic programming (GP)+genetic algorithm (GA) was established taking the time series of gyro's random drift as study object. Firstly, the time series of gyro's random drift were got through analyzing and preprocessing the measured data of gyro. Then the model from the data based on the GP was established and the nonlinear mathematic relationship between the current time and the former times was obtained. Finally, GA was used to optimize the parameters of the mathematic relationship in order to get the more accurate model. The experiment result indicates that compared with classical auto regressive (AR) model, this model can effectively reflect the characteristics of gyro's random drift. The square error of the gyro's random drift has decreased by 73.72% and the effects have increased by 4.72% compared with classical AR model. The establishing model method effectively compensates the gyro's random drift and improved the stability of the system.

     

  • loading
  • [1]
    Li J L, Fang J C, Du M.Error analysis and gyro-bias calibration of analytic coarse alignment for airborne POS[J].IEEE Transactions on Instrumentation and Measurement, 2012, 61(11):3058-3064.
    [2]
    Hua Z W, Rui L C.Correlation coefficient stationary series method for gyroscope random drift[C]//Proceedings of 2011 6th IEEE Conference on Industrial Electronics and Applications.Piscataway, NJ:IEEE Press, 2011:2270-2273.
    [3]
    Sun H, Wu Q Z.Error analysis and algorithm implementation for an improved optical-electric tracking device based on MEMS[C]//International Symposium on Photoelectronic Detection and Imaging.Bellingham, WA:SPIE, 2013, 8907:1-7.
    [4]
    Li J L, Fang J C.Kinetics and design of a mechanically dithered ring laser gyroscope position and orientation system[J].IEEE Transactions on Instrumentation and Measurement, 2013, 62(1):210-220.
    [5]
    王新龙, 李娜.MEMS陀螺随机误差的建模与分析[J].北京航空航天大学学报, 2012, 38(2):170-174. Wang X L, Li N.Error modeling and analysis for random drift of MEMS gyroscopes[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(2):170-174(in Chinese).
    [6]
    杜红松, 程建华, 唐苗苗.基于ARMA的微惯性传感器随机误差建模方法[J].传感器与微系统, 2013, 32(4):54-64. Du H S, Cheng J H, Tang M M.Stochastic error modeling method for micro inertial sensor based on ARMA[J].Transducer and Microsystem Technologies, 2013, 32(4):54-64(in Chinese).
    [7]
    钱华明, 夏全喜, 阙兴涛, 等.MEMS陀螺仪随机漂移仿真和试验[J].北京航空航天大学学报, 2010, 36(6):636-639. Qian H M, Xia Q X, Que X T, et al.Smiulation and expermient of random errors of MEMS gyroscope[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(6):636-639(in Chinese).
    [8]
    Li J L, Jiao F, Fang J C, et al.Temperature error modeling of RLG based on neural network optimized by PSO and regularization[J].IEEE Sensors Journal, 2014, 14(3):912-919.
    [9]
    Lin D Z, Yang Q H, Dong L L, et al.Analysis and compensation of MEMS gyroscope drift[C]//Proceedings of 2013 IEEE Seventh International Conference on Sensing Technology.Piscataway, NJ:IEEE Press, 2013:592-596.
    [10]
    Xia Y, Chen W J, Peng W H.Research on random drift modeling and a Kalman filter based on the differential signal of MEMS gyroscope[C]//25th Chinese Control and Decision Conference.Piscataway, NJ:IEEE Press, 2013:3233-3237.
    [11]
    Li Q, Xu J N.Random drift modeling for MEMS gyroscope based on lifting wavelet and wavelet neural network[C]//Proceedings of 2011 International Conference on IEEE Electric Information and Control Engineering.Piscataway, NJ:IEEE Press, 2011:3454-3456.
    [12]
    Urvesh B, Mark J, Zhang M J.Evolving diverse ensembles using genetic programming for classification with unbalanced data[J].IEEE Transactions on Evolutionary Computation, 2013, 17(3):368-386.
    [13]
    Lee Y-S, Tong L-I.Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming[J].Knowledge-Based Systems, 2011, 24(1):66-72.
    [14]
    Garg A, Tai K.Review of genetic programming in modeling of machining processes[C]//Proceedings of 2012 International Conference on Modelling, Identification and Control, ICMIC 2012.Piscataway, NJ:IEEE Press, 2012:653-658.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1136) PDF downloads(473) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return