Volume 41 Issue 7
Jul.  2015
Turn off MathJax
Article Contents
LI Ke, LIU Yi, DU Shaoyi, et al. Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1177-1182. doi: 10.13700/j.bh.1001-5965.2014.0482(in Chinese)
Citation: LI Ke, LIU Yi, DU Shaoyi, et al. Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1177-1182. doi: 10.13700/j.bh.1001-5965.2014.0482(in Chinese)

Spacecraft electrical characteristics identification method based on PCA feature extraction and WPSVM

doi: 10.13700/j.bh.1001-5965.2014.0482
  • Received Date: 31 Jul 2014
  • Rev Recd Date: 26 Sep 2014
  • Publish Date: 20 Jul 2015
  • To solve the problems of large amount of unlabeled test data, high dimension characteristics, slow computing speed and low recognition rate during the spacecraft electrical characteristics identification process of monitoring system, an on-line identification algorithm based on principal component analysis (PCA) feature extraction and weighted proximal support vector machine (WPSVM) was proposed. The principal component analysis is used for feature selection and extraction during complex signal analysis process, to reduce the characteristics dimension and improve the speed of the spacecraft electrical on-line identification. In order to resolve the PCA results selection problem, our team put forward data capture contribution method by using threshold to capture data, effectively guarantee the validity and consistency of the data. The experimental results indicate that this method we proposed can get better spacecraft electrical characteristics data feature, improve the accuracy of identification, and shorten the compute-time with high efficiency at the same time.

     

  • loading
  • [1]
    Steven R S. System identification technology modeling for nonintrusive load diagnostics[D].Cambridge: Massachusetts Institute of Technology, 2000.
    [2]
    Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(1): 28-44.
    [3]
    Chew H G, Bogner R E, Lim C C.Dual ν-support vector machine with error rate and training size biasing[C]//IEEE International Conference Acoustics Speech Signal Processing.Piscataway, NJ: IEEE Press, 2001, 2: 1269-1272.
    [4]
    杜林, 刘伟明, 王有元.基于CPLD的电网过电压变频数据采集卡设计[J].高电压技术, 2008, 34(8): 1589-1593. Du L, Liu W M, Wang Y Y.Data acquisition card with variable sampling speed for monitoring overvoltage based on CPLD[J].High Voltage Engineering, 2008, 34(8): 1589-1593(in Chinese).
    [5]
    吴昊, 肖先勇.小波能量谱和神经元网络法识别雷击与短路故障[J].高电压技术, 2007, 33(10): 189-193. Wu H, Xiao X Y.Lightning strike and fault identification by the wavelet energy spectrum and neural network method[J].High Voltage Engineering, 2007, 33(10): 189-193(in Chinese).
    [6]
    Huang J S, Negnevitsky M, Nguyen D T.A neural-fuzzy classifier for recognition of power quality disturbances[J].IEEE Transactions on Power Delivery, 2002, 17(2): 609-616.
    [7]
    王钢, 李海峰, 赵建仓, 等.基于小波多尺度分析的输电线路直击雷暂态识别[J].中国电机工程学报, 2004, 24(4): 358-364. Wang G, Li H F, Zhao J C, et al.Identification of transients on transmission lines caused by direct lighting strokes based on multiresolution signal decomposition[J].Proceedings of the CSEE, 2004, 24(4): 358-364(in Chinese).
    [8]
    Chien S, Sherwood R, Tran D, et al.Using autonomy flight software to improve science return on Earth Observing One[J].Journal of Aerospace Computing, Information, and Communication, 2005, 2(4): 196-216.
    [9]
    李可, 刘旺开, 王浚.专家-模糊PID在低速风洞风速控制系统中的应用[J].北京航空航天大学学报, 2007, 33(12): 1387-1390. Li K, Liu W K, Wang J.Parameters self-tuning fuzzy-PID combined with expert control on wind velocity control system of wind tunnels at home[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(12): 1387-1390(in Chinese).
    [10]
    Li K, Liu W K, Wang J, et al.An intelligent control method for a large multi-parameter environmental simulation cabin[J].Chinese Journal of Aeronautics, 2013, 26(6): 1360-1369.
    [11]
    李可, 庞丽萍, 刘旺开, 等. 环境模拟舱体的建模仿真及控制方法[J].北京航空航天大学学报, 2007, 33(5): 535-538. Li K, Pang L P, Liu W K, et al.System model simulation andcontrol method used in environmental simulation chambers[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 535-538(in Chinese).
    [12]
    Huang S H, Kothamasu R, Shiralkar Y C, et al.Prediction of plastic preform temperature profile and modeling perspective[J].International Journal of Manufacturing Science and Technology, 2003, 4(2): 56-83.
    [13]
    邓乃扬, 田英杰. 数据挖掘中的新方法——支持向量机[M].北京: 科学出版社, 2004: 189-193. Deng N Y, Tian Y J.A new method of data mining: SVM[M].Beijing: Science Press, 2004: 189-193(in Chinese).
    [14]
    Witten I H, Frank E.Data mining: Practical machine learning tools and techniques[M].2nd ed.San Francisco: Morgan Kaufmann, 2005: 36-39.
    [15]
    Zhu X, Ye J, Zhang X.A fixed-point nonlinear PCA algorithm for blind source separation[J].Neurocomputing, 2005, 69(1): 264-272.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(802) PDF downloads(567) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return