Volume 41 Issue 7
Jul.  2015
Turn off MathJax
Article Contents
SHAO Xingling, WANG Honglun, ZHANG Huiping, et al. Control method and applications of robust trajectory linearization via nonlinear differentiators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1259-1268. doi: 10.13700/j.bh.1001-5965.2014.0544(in Chinese)
Citation: SHAO Xingling, WANG Honglun, ZHANG Huiping, et al. Control method and applications of robust trajectory linearization via nonlinear differentiators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1259-1268. doi: 10.13700/j.bh.1001-5965.2014.0544(in Chinese)

Control method and applications of robust trajectory linearization via nonlinear differentiators

doi: 10.13700/j.bh.1001-5965.2014.0544
  • Received Date: 05 Sep 2014
  • Rev Recd Date: 17 Oct 2014
  • Publish Date: 20 Jul 2015
  • Considering the lack of enough robustness against uncertainties in conventional trajectory linearization control (TLC) method, an improved robust control method was proposed, based on the design principle of nonlinear differentiators. Firstly, via introducing the concept of second-order linear differentiator (SOLD), it was indicated that peaking phenomenon which was similar with using high-gains in SOLD would emerge during the transient profile of differentiation of the nominal command in the existing TLC. And then, tracking differentiator (TD) was used to produce the nominal command and its derivative, peaking phenomenon was totally eliminated and the ability of adjusting the response speed of closed-loop system under the physical limitations was endowed simultaneously. Secondly, by constructing the desired tracking error dynamics of closed-loop system, the control law of the linear time-varying (LTV) system could be directly obtained, PD-spectrum theorem and real time tuning of the time varying bandwidth (TVB) of TLC were both avoided. Meanwhile, by utilizing the non-perturbation form of hybrid differentiator (HD) as the desired error dynamics of closed-loop system, the robustness of the system was thus enhanced. In addition, the boundedness of the tracking error in interference system was proved by Lyapunov theory. Finally, the proposed method was applied to the attitude tracking problem of hypersonic vehicle. The simulation results demonstrate the proposed method can still exhibit better control performance and anti-interference capability even if there exist large uncertainties in the aerodynamic parameters, thus the effectiveness and robustness of the control scheme is validated.

     

  • loading
  • [1]
    Zhu J J, Banker B D, Hall C E.X-33 ascent flight control design by trajectory linearization-a singular perturbation approach[C]// AIAA Guidance, Navigation and Control Conference.Reston: AIAA, 2000: 4159-4178.
    [2]
    Bevacqua T, Best E, Huizenga A, et al.Improved trajectory linearization flight controller for reusable launch vehicles[C]//AIAA Aerospace Sciences Meting and Exhibit.Reston: AIAA, 2004: 875-887.
    [3]
    Liu Y, Zhu J J, Robert L, et al.Omni-directional mobile robot controller based trajectory linearization[J].Robotics and Autonomous Systems, 2008, 56(5): 461-479.
    [4]
    Liu Y, Zhu J J. Regular perturbation analysis for trajectory linearization control[C]//Proceedings of the 2007 American Control Conference.Piscataway, NJ: IEEE Press, 2007: 3053-3058.
    [5]
    Liu Y, Huang R, Zhu J J.Adaptive neural network control based on trajectory linearization control[C]//The 6th World Congress on Intelligent Control and Automation.2006: 417-421.
    [6]
    朱亮, 姜长生, 陈海通, 等.基于单隐层神经网络的空天飞行器直接自适应轨迹线性化控制[J].宇航学报, 2006, 27(3): 338-344. Zhu L, Jiang C S, Chen H T, et al.Direct adaptive trajectory linearization control of aerospace vehicle using SHLNN[J].Journal of Astronautics, 2006, 27(3): 338-344(in Chinese).
    [7]
    朱亮, 姜长生, 薛雅莉.基于单隐层神经网络的空天飞行器鲁棒自适应轨迹线性化控制[J].兵工学报, 2008, 29(1): 52-56. Zhu L, Jiang C S, Xue Y L.Robust adaptive trajectory linearization control for aerospace vehicle using single hidden layer neutral networks[J].Acta Armamentarii, 2008, 29(1): 52-56(in Chinese).
    [8]
    薛雅丽, 姜长生, 朱亮. 一类径向基神经网络干扰观测器轨迹线性化控制[J].系统工程与电子技术, 2008, 19(4): 522-526. Xue Y L, Jiang C S, Zhu L.Trajectory linearization control of an aerospace vehicle based on RBF neutral network[J].Journal of Systems Engineering and Electronics, 2008, 19(4): 522-526(in Chinese).
    [9]
    Jiang C S, Zhang C Y, Zhu L.Research of robust adaptive trajectory linearization control based on T-S fuzzy system[J].Journal of Systems Engineering and Electronics, 2008, 19(3): 537-545.
    [10]
    韩京清, 袁露林. 跟踪-微分器的离散形式[J].系统科学与数学, 1999, 19(3): 268-273. Han J Q, Yuan L L.The discrete tracking differentiator[J].System Science and Mathematics, 1999, 19(3): 268-273(in Chinese).
    [11]
    Su Y X, Duan B Y, Zheng C H, et al.Disturbance-rejection high-precision motion control of a stewart platform[J].IEEE Transactions on Control Systems Technology, 2004, 12(3): 264-274.
    [12]
    王新华, 陈增强, 袁著祉.全程快速非线性跟踪-微分器[J].控制理论与应用, 2003, 20(6): 875-878. Wang X H, Chen Z Q, Yuan Z Z.Nonlinear tracking-differentiator with high speed in whole course[J].Journal of Control Theory & Applications, 2003, 20(6): 875-878(in Chinese).
    [13]
    Wang X H, Chen Z Q.Finite-time-convergent differentiator based on singular perturbation technique[J].IEEE Transactions on Automatic Control, 2007, 52(9): 1731-1737.
    [14]
    宿敬亚, 张瑞峰, 王新华, 等.基于滤噪微分器的四旋翼飞行器控制[J].控制理论与应用, 2009, 26(8): 827-832. Su J Y, Zhang R F, Wang X H, et al.Controlling a four-rotor aircraft based on noise-attenuation differentiator[J].Journal of Control Theory & Applications, 2009, 26(8): 827-832(in Chinese).
    [15]
    Ibrir S. Linear time-derivative trackers[J].Automatica, 2004, 40(3): 397-405.
    [16]
    韩京清. 自抗扰控制技术[M].北京: 国防工业出版社, 2008: 56-66. Han J Q.Active disturbance rejection control technique[M].Beijing: National Defense Industry Press, 2008: 56-66(in Chinese).
    [17]
    Haimo V T. Finite time controllers[J]Siam Journal on Control and Optimization, 1986, 24(4): 760-771.
    [18]
    陈小庆. 高超声速滑翔飞行器机动技术研究[D].长沙: 国防科学技术大学, 2011. Chen X Q.The key technology relative to the maneuverability of hypersonic gliding vehicle[D].Changsha: National University of Defense Technology, 2011(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(849) PDF downloads(673) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return