Volume 41 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
WU Chao, WANG Haowen, JIANG Chen, et al. LADRC-based attitude decoupling control for helicopter and parameters tuning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2085-2094. doi: 10.13700/j.bh.1001-5965.2014.0710(in Chinese)
Citation: WU Chao, WANG Haowen, JIANG Chen, et al. LADRC-based attitude decoupling control for helicopter and parameters tuning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 2085-2094. doi: 10.13700/j.bh.1001-5965.2014.0710(in Chinese)

LADRC-based attitude decoupling control for helicopter and parameters tuning

doi: 10.13700/j.bh.1001-5965.2014.0710
  • Received Date: 17 Nov 2014
  • Rev Recd Date: 13 Feb 2015
  • Publish Date: 20 Nov 2015
  • To meet the ADS-33E-PRF flight quality and effectively overcome the influence of external disturbance, an attitude control strategy based on a linear active disturbance rejection control (LADRC) is proposed for helicopter. Flight dynamics model of UH-60A and the wind model were established. UH-60A was trimmed for verifying accuracy of dynamic model and trim algorithm. Helicopter attitude decoupling control loop based on the single input/single output second-order LADRC controller was set up with stabilization feedback loop. The controller parameter tuning problem was transformed into constrained optimization problem in time and frequency domain according to quality requirement of ADS-33E-PRF. Combining H-infinity synthesis algorithm and steepest descent algorithm, the optimization of parameters was calculated. Quality assessment of attitude control was made and the control loop was applied to the attitude hold control simulation in atmospheric disturbance. The results of simulation and quality evaluation show that the attitude control system based on LADRC has good decoupling performance and capability of anti-disturbance.

     

  • loading
  • [1]
    Bouwer G, Hilbert K B.A piloted simulator investigation of decoupling helicopters by using a model following control system, AD-A139976[R].Virginia:ASTIA, 1984.
    [2]
    Hilbert K B, Bouwer G.The design of a model-following control system for helicopters[C]//17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference.Reston:AIAA, 1984:601-617.
    [3]
    袁锁中,杨一栋.一拍跟踪的直升机显模型跟踪解耦控制系统设计[J].直升机技术, 1997(1):27-32. Yuan S Z, Yang Y D.Design of a model following control system for helicopter[J].Helicopter Technique, 1997(1):27-32(in Chinese).
    [4]
    郑峰婴,杨一栋.控制阵解耦的直升机显模型跟踪飞控系统设计[J].海军航空工程学院学报, 2007, 22(1):119-124. Zheng F Y, Yang Y D.Flight control system design of explicit model-following for helicopter based on control distribution matrix decouple[J].Journal of Naval Aeronautical Engineering Institute, 2007, 22(1):119-124(in Chinese).
    [5]
    Landis K, Glusman S.Development of ADOCS controllers and control laws:Vol 1-3, NASA-CR-17739[R].Washington, D.C.:NASA, 1987.
    [6]
    Tischler M B, Fletcher J W, Morris P M, et al.Applications of flight control system methods to an advanced combat rotorcraft, NASA-TM-101054[R].Washington, D.C.:NASA, 1989.
    [7]
    Manness M A, Murray-Smith D J.Aspects of multivariable flight control law design for helicopters using eigenstructure assignment[J].Journal of the American Helicopter Society, 1992, 37(3):18-32.
    [8]
    Hicks K L, Rodriguez A A.Decoupling compensation for the Apache helicopter[C]//Proceedings of the IEEE Conference on Decision and Control.Piscataway, NJ:IEEE Press, 1996, 2:1551-1555.
    [9]
    Ji S Y, Wu A G.Study on dual-loop controller of helicopter based on the robust H-infinite loop shaping and mixed sensitivity[C]//2011 International Conference on Electrical and Control Engineering.Piscataway, NJ:IEEE Press, 2011:1291-1294.
    [10]
    邢小军,闫建国,张洪才.直升机H鲁棒控制器的优化设计及仿真[J].系统仿真学报, 2010, 22(9):2185-2189. Xing X J, Yan J G, Zhang H C.Design and simulation for helicopter's optimal H infinity robust controller[J].Journal of System Simulation, 2010, 22(9):2185-2189(in Chinese).
    [11]
    Wang B, Chen B M, Lee T H.An RPT approach to time-critical path following of an unmanned helicopter[C]//8th Asian Control Conference-Final Program and Proceedings.Piscataway, NJ:IEEE Press, 2011:211-216.
    [12]
    黄一,薛文超,杨晓霞.自抗扰控制:思想、理论分析及运用[C]//第29届中国控制会议论文集.北京:中国自动化学会控制理论专业委员会, 2010:29-31. Huang Y, Xue W C, Yang X X.Active disturbance rejection control:Methodology, theoretical analysis and applications[C]//Proceedings of the 29th Chinese Control Conference.Beijing:Technical Committee on Control Theory, Chinese Association of Automation, 2010:29-31(in Chinese).
    [13]
    韩京清.自抗扰控制器及其应用[J].控制与决策, 1998, 13(1):19-23. Han J Q.Active disturbance rejection controller and its applications[J].Control and Decision, 1998, 13(1):19-23(in Chinese).
    [14]
    Gao Z Q.Active disturbance rejection control:A paradigm shift in feedback control system design[C]//Proceedings of the American Control Conference.Piscataway, NJ:IEEE Press, 2006:2399-2405.
    [15]
    Talbot P D, Tinling B E, Decker W A, et al.A mathematical model of a single main rotor helicopter for piloted simulation, NASA-TM-84281[R].Washington, D.C.:NASA, 1982.
    [16]
    Hilbert K B.A mathematical model of the UH-60 helicopter, NASA-TM-85890[R].Washington, D.C.:NASA, 1984.
    [17]
    Howlett J J.UH-60A black hawk engineering simulation program:Volumes I-Mathematical model, NASA-CR-166309[R].Washington, D.C.:NASA, 1981.
    [18]
    吴超,谭剑锋,王浩文,等.基于GA/LM混合优化的直升机全机配平算法[J].飞行力学, 2014, 32(1):5-19. Wu C, Tan J F, Wang H W, et al.Optimal trim for helicopter based on GA and LM hybrid algorithm[J].Flight Dynamics, 2014, 32(1):5-19(in Chinese).
    [19]
    Moorhouse D, Woodcock R.US military specification MIL-F-8785C[R].Washington, D.C.:US Department of Defense, 1980.
    [20]
    Ballin M G.Validation of a real-time engineering simulation of the UH-60A helicopter, NASA-TM-88359[R].Washington, D.C.:NASA, 1987.
    [21]
    Zheng Q, Chen Z, Gao Z.A dynamic decoupling control approach and its applications to chemical processes[C]//Proceedings of the American Control Conference.Piscataway, NJ:IEEE Press, 2007:5176-5181.
    [22]
    Zheng Q, Gao L Q, Gao Z.On estimation of plant dynamics and disturbance from input-output data in real time[C]//Proceedings of the IEEE International Conference on Control Applications.Piscataway, NJ:IEEE Press, 2007:1167-1172.
    [23]
    Zheng Q, Gao L Q, Gao Z.On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]//Proceedings of the 46th IEEE Conference on Decision and Control.Piscataway, NJ:IEEE Press, 2007:3501-3506.
    [24]
    ADS-33D-PRF.Aeronautical design standard performance specification handling qualities requirements for military rotorcraft[S].Missouri:ATCOM, 1996.
    [25]
    Apkarian P, Noll D.Nonsmooth H synthesis[J].IEEE Transactions on Automatic Control, 2006, 51(1):71-86.
    [26]
    Tischler M B, Colbourne J D, Morel M R, et al.A multi-disciplinary flight control development environment and its application to a helicopter[J].Control Systems, IEEE, 1999, 19(4):22-33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1103) PDF downloads(701) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return