Volume 41 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
FU Li, XIE Fuhuai, MENG Guanglei, et al. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1994-1999. doi: 10.13700/j.bh.1001-5965.2014.0726(in Chinese)
Citation: FU Li, XIE Fuhuai, MENG Guanglei, et al. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1994-1999. doi: 10.13700/j.bh.1001-5965.2014.0726(in Chinese)

An UAV air-combat decision expert system based on receding horizon control

doi: 10.13700/j.bh.1001-5965.2014.0726
  • Received Date: 19 Nov 2014
  • Rev Recd Date: 13 Feb 2015
  • Publish Date: 20 Nov 2015
  • Aiming at the poor adaptability of expert system in air combat, a maneuvering decision algorithm based on the receding horizon control (RHC) method was proposed to improve the air combat maneuvering decision-making expert system. Firstly, the optimal control problem was systematically analyzed in the air combat maneuvering decision-making expert system. The system state equation, the index function and the control constraints of the maneuvering decision-making optimal control model were established. On this basis, according to the principle of the RHC method, the whole air combat process was divided into some sequential ones with the finite time horizon. In each time horizon, the optimal control model of the maneuvering decision-making expert system was solved to conduct air combat maneuvering decisions with initial state updated. The process was repeated until the air combat was over. The simulation result shows that, through solving the RHC optimal control model of the air combat maneuvering decision-making expert system, the unmanned aerial vehicle (UAV) can rapidly take effective maneuvering decisions in the case of expert system failure.

     

  • loading
  • [1]
    Galati D G.Game theoretic target assignment strategies in competitive multi-team systems[D].Pittsburgh:University of Pittsburgh, 2004.
    [2]
    Imado F, Kuroda T.A method to solve missile-aircraft pursuit-evasion differential games[C]//Proceedings of the 16th IFAC World Congress.Laxenburg:IFAC, 2005, 16:176-181.
    [3]
    Virtanen K, Raivio T.Modeling pilot's sequential maneuvering decisions by a multistage influence diagram[J].Journal of Guidance, Control, and Dynamics, 2004, 27(4):665-677.
    [4]
    董彦非,郭基联,张恒喜.空战机动决策方法研究[J].火力与指挥控制, 2002, 27(2):75-78. Dong Y F, Guo J L, Zhang H X.The methods of air combat maneuvering decision[J].Fire Control & Command Control, 2002, 27(2):75-78(in Chinese).
    [5]
    赵威.基于专家系统的双机协同攻击决策技术研究[D].西安:西北工业大学, 2007. Zhao W.Based on expert system coordination air fight decision research[D].Xi'an:Northwestern Polytechnical University, 2007(in Chinese).
    [6]
    Platts J T, Howell S E, Peeling E C, et al.Increasing UAV intelligence through learning[C]//AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit.Reston:AIAA, 2004, 1:270-282.
    [7]
    Xiao L, Sun D, Liu Y, et al.A combined method based on expert system and BP neural network for UAV systems fault diagnosis[C]//2010 International Conference on Artificial Intelligence and Computational Intelligence.Piscataway, NJ:IEEE Press, 2010, 3:3-6.
    [8]
    Xu B, Kurdila A, Stilwell D J.A hybrid receding horizon control method for path planning in uncertain environments[C]//The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway, NJ:IEEE Press, 2009:4887-4892.
    [9]
    McGrew J S, How J P, Williams B, et al.Air-combat strategy using approximate dynamic programming[J].Journal of Guidance, Control, and Dynamics, 2010, 33(5):1641-1654.
    [10]
    Fred A, Giro C, Michael F.Automated maneuvering decisions for air to air combat[R].Reston:AIAA, 1987.
    [11]
    James S M.Real-time maneuvering decisions for autonomous air combat[D].Massachusetts:Massachusetts Institute of Technology, 2008.
    [12]
    马伟江,姚佩阳,周翔翔.改进的超视距空战态势评估方法[J].计算机工程与设计, 2011, 32(6):2096-2099. Ma W J, Yao P Y, Zhou X X.Improved method of situation assessment in BVR air combat[J].Computer Engineering and Design, 2011, 32(6):2096-2099(in Chinese).
    [13]
    吴文海,周思羽,高丽.基于导弹攻击区的超视距空战态势评估改进[J].系统工程与电子技术, 2011, 33(12):2679-2685. Wu W H, Zhou S Y, Gao L.Improvements of situation assessment for beyond-visual-range air combat based on missile launching envelope analysis[J].Journal of Systems Engineering and Electronics, 2011, 33(12):2679-2685(in Chinese).
    [14]
    张洪波,李国英,丁全心.超视距空战下的态势评估技术研究[J].电光与控制, 2010, 17(4):9-13. Zhang H B, Li G Y, Ding Q X.Research on situation assessment in BVR air combat[J].Electronics Optics & Control, 2010, 17(4):9-13(in Chinese).
    [15]
    付昭旺,李战武,强晓明.基于滚动时域控制的战斗机空战机动决策[J].电光与控制, 2013, 20(3):20-29. Fu Z W, Li Z W, Diang X M.Tactical decision-making method based on receding horizon control for air combat[J].Electronics Optics & Control, 2013, 20(3):20-29(in Chinese).
    [16]
    Bellingham J, Richards A, How J P.Receding horizon control of autonomous aerial vehicles[C]//Proceedings of the American Control Conference, 2002.Piscataway, NJ:IEEE Press, 2002, 5:3741-3746.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1072) PDF downloads(744) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return