Volume 42 Issue 2
Feb.  2016
Turn off MathJax
Article Contents
MA Jiming, SHEN Yayong, LI Qilinet al. Oil film analysis of swash plate/slipper pair based on CFD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2): 265-272. doi: 10.13700/j.bh.1001-5965.2015.0107(in Chinese)
Citation: MA Jiming, SHEN Yayong, LI Qilinet al. Oil film analysis of swash plate/slipper pair based on CFD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2): 265-272. doi: 10.13700/j.bh.1001-5965.2015.0107(in Chinese)

Oil film analysis of swash plate/slipper pair based on CFD

doi: 10.13700/j.bh.1001-5965.2015.0107
  • Received Date: 04 Mar 2015
  • Publish Date: 20 Feb 2016
  • The 3-D Navier-Stokes equations and arbitrary Lagrangian-Eulerian (ALE) method are firstly used to present the oil film analysis method based on computational fluid dynamics (CFD), which can describe the correlation among slipper structure parameters, running conditions and oil film thickness. Then, the oil film thicknesses of a slipper bearing under 24 different running conditions are obtained by simulation method. A function is consequently obtained based on the simulation results, which can express the relationships between running conditions (temperature, rotation speed, and outlet preesure) and oil film thickness. Furthermore, an equation of hydraulic dynamic parameter is provided and used to express the oil film thickness analytically. Based on the CFD simulation results, the parameter is proven to be only related with the oil viscosity (temperature) under fixed design structure, and unrelated with other running conditions, such as rotation, pressure, and so on. It is convenient for designer to derive the oil film thickness expression equation. Finally, we compared the oil film thicknesses obtained from analytical and CFD methods, and the results show that the presented method is feasible.

     

  • loading
  • [1]
    张斌. 轴向柱塞泵的虚拟样机及油膜压力特性研究[D].杭州:浙江大学,2009:75-97. ZHANG B.Study on virtual prototype and pressure characteristics of oil film for axial piston pump[D].Hangzhou:Zhejiang University,2009:75-97(in Chinese).
    [2]
    李迎兵. 轴向柱塞泵滑靴油膜特性研究[D].杭州:浙江大学,2011:23-35. LI Y B.Study on characteristics of oil film for slipper pair of axial piston pumps[D].Hangzhou:Zhejiang University,2011:23-35(in Chinese).
    [3]
    HOOKE C J,LI K Y.The lubrication of slippers in axial piston pumps and motors-the effect of tilting couples[J].Journal of Mechanical Engineering Science,1989,203(53):343-350.
    [4]
    KOC E,HOOKE C J.Considerations in the design of partially hydrostatic slipper bearings[J].Tribology International,1997,30(11):815-823.
    [5]
    MANRING N D,WRAY C L, DONG Z.Experimental studies on the performance of slipper bearings within axial piston pumps[J].Journal of Tribology,2004,126(3):511-518.
    [6]
    CANBULUT F. The experimental analyses of the effects of the geometric and working parameters on the circular hydrostatic thrust bearings[J].JSME International Journal,2005,48(4):715-722.
    [7]
    FISHER M J. A theoretical determination of some characteristics of a tilted hydrostatic slipper bearing[R].[S.l.]:British Hydromechanics Research Association,1962.
    [8]
    庄欠伟,周华,艾青林.轴向柱塞泵滑靴副润滑特性实验台的研制[J].机床与液压,2005(3):113-115. ZHUANG Q W,ZHOU H,AI Q L.Development of experiment rig for lubricate film of the slipper pad in axial piston pumps[J].Machine Tools & Hydraulics,2005(3):113-115(in Chinese).
    [9]
    艾青林,周华,张增猛,等.轴向柱塞泵配流副与滑靴副润滑特性试验系统的研制[J].液压与气动,2004(11):22-25. AI Q L,ZHOU H,ZHANG Z M, et al.Development of lubricating characteristics testing system of friction pair in axial piston pump[J].Chinese Hydraulics & Pneumatics,2004(11):22-25(in Chinese).
    [10]
    NIE L, HUANG G H,LI Y R.Tribological study on hydrostatic slipper bearing with annular orifice damper for water hydraulic axial piston motor[J].Tribology International,2006,39(11):1342-1354.
    [11]
    马纪明,李齐林,任春宇,等.轴向柱塞泵/滑靴副润滑磨损的影响因素分析[J].北京航空航天大学学报,2015,41(3):405-410. MA J M,LI Q L,REN C Y,et al.Influence factors analysis on wear of hydraulic axial piston pump/slipper pair[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(3):405-410(in Chinese).
    [12]
    MA J M,CHEN J,LI J.Wear analysis of swash plate/slipper pair of axis piston hydraulic pump[J].Tribology International,2015,90:467-472.
    [13]
    IBOSHI N,YAMAGUCHI A.Characteristics of a slipper bearing for swash plate type axial piston pumps and motors,theoretical analysis[J].Bulletin of the JSME,1982,25(428):1921-1930.
    [14]
    IBOSHI N. Characteristics of a slipper bearing for swash plate type axial piston pumps and motors,design method for a slipper with a minimum power loss in fluid lubrication[J].Bulletin of the JSME,1986,129(254):2529-2538.
    [15]
    BERGADA J M,KUMAR S,DAVIES D L,et al.A complete analysis of axial piston pump leakage and output flow ripples[J].Applied Mathematical Modeling,2012,36(4):1731-1751.
    [16]
    SCHENK A,IVANTYSYNOVA M.A transient fluid structure interaction model for lubrication between the slipper and swash plate in axial piston machines[C]//Proceedings of the 9th International Fluid Power Conference(9IFK),2014,1:398-409.
    [17]
    KAZAMA T,YAMAGUCHI A.Application of a mixed lubrication model for hydrostatic equipment[J].Journal of Tribology,1993,115(4):686-691.
    [18]
    FANG Y,SHIRAKASHI M.Mixed lubrication characteristics between the piston and cylinder in hydraulic piston pump-motor[J].Journal of Tribology,1995,117(1):80-85.
    [19]
    BERGADA J M,WATTON J,KUMMAR S.Pressure,flow,force,and torque between the barrel and port plate in an axial piston pump[J].Journal of Dynamic Systems Measurement and Control,2008,130(1):141-148.
    [20]
    王彬,周华,杨华勇.轴向柱塞泵配流副油膜试验原理及控制特性[J].机械工程学报,2009,45(11):113-118. WANG B,ZHOU H,YANG H Y.Principle of oil film test on port pair of axial piston pump and control characteristics[J].Journal of Mechanical Engineering,2009,45(11):113-118(in Chinese).
    [21]
    BRAIDIC-MITIDIERI P,GOSMAN A D,IOANNIDES E,et al.CFD analysis of a low friction pocketed pad bearing[J].Journal of Tribology,2005,127(4):803-812.
    [22]
    HOUZEAUX G,CODINA R.A finite element method for the solution of rotary pumps[J].Computers & Fluids,2007,36(4):667-679.
    [23]
    KUMAR S,BERGADA J M,WATTON J.Axial piston pump grooved slipper analysis by CFD simulation of three-dimensional NVS equation in cylindrical coordinates[J].Computers & Fluids,2009,38(3):648-663.
    [24]
    KUMAR S. CFD analysis of an axial piston pump[D].Barcelona:Universidad Politecnica de Catalunya,2010:45-86.
    [25]
    ALMQVIST T,ALMQVIST A,LARSSON R.A comparison between computational fluid dynamic and Reynolds approaches for simulating transient EHL line contact[J].Tribology International,2004,37(1):61-69.
    [26]
    GUO Z,HIRANO T,KIRK R G.Application of CFD analysis for rotating machinery,Part 1:Hydrodynamic,hydrostatic bearings and squeeze film damper[J].ASME,2003,4(1):651-659.
    [27]
    DUARTE F,GORMAZ R,NATESAN S.Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries[J].Computer Methods in Applied Mechanics and Engineering,2004,193(45-47):4819-4836.
    [28]
    张兆顺. 流体力学[M].北京:清华大学出版社,2006:53-55. ZHANG Z S.Fluid mechanics[M].Beijing:Tsinghua University Press,2006:53-55(in Chinese).
    [29]
    李玉琳. 液压元件与系统设计[M].北京:北京航空航天大学出版社,1991:13-14. LI Y L.Hydraulic components and system design[M].Beijing:Beihang University Press,1991:13-14(in Chinese).
    [30]
    HIRT C W,AMSDEN A A,COOK J L.An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J].Journal of Computational Physics,1974,14(2):227-253.
    [31]
    SOULAIMANI A,SAADB Y.An arbitrary Lagrangian-Eulerian finite element method for solving three-dimensional free surface flows[J].Computer Methods in Applied Mechanics and Engineering,1998,162(1-4):79-106.
    [32]
    CODINA R,ZIENKIEWICZ O C.CBS versus GLS stabilization of the incompressible Navier-Stokes equations and the role of the time step as stabilization parameter[J].Communications in Numerical Methods in Engineering,2002,18(2):99-112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(946) PDF downloads(598) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return