Volume 41 Issue 6
Jun.  2015
Turn off MathJax
Article Contents
XIANG Yan, SI Jiangju. Strategies for reconciling tradeoff between conductivity and swelling in alkaline polymer electrolytes membrane[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 961-968. doi: 10.13700/j.bh.1001-5965.2015.0174(in Chinese)
Citation: XIANG Yan, SI Jiangju. Strategies for reconciling tradeoff between conductivity and swelling in alkaline polymer electrolytes membrane[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 961-968. doi: 10.13700/j.bh.1001-5965.2015.0174(in Chinese)

Strategies for reconciling tradeoff between conductivity and swelling in alkaline polymer electrolytes membrane

doi: 10.13700/j.bh.1001-5965.2015.0174
  • Received Date: 26 Mar 2015
  • Publish Date: 20 Jun 2015
  • Alkaline polymer electrolytes membrane fuel cells (APEMFC) have been investigated as an alternative to proton-exchange membrane fuel cells (PEMFC) because of their compatibility with nonprecious-metal catalyst, favorability toward fuel oxidation, together with the lower cost, where the charge carrier is OH- rather than H+. However, the performance of APEMFC, especially the conductivity, has thus far lagged that of PEMFC because of the intrinsic lower mobility of OH- than that of H+. The improvement of ion-exchange capacity (IEC) by increasing the grafting degree (GD) of cationic functional groups can, to some extent, solve this issue; however, a high IEC is always accompanied by excessive water uptake, swelling, and backbone degradation. Balancing the ionic conductivity and the dimensional stability in APEs has been a formidable scientific challenge. Here, we reviewed the research progress of the strategies for reconciling the tradeoff between conductivity and dimensional stability. These strategies include physical stratigies, such as blending and filling pores to restain the swelling, chemical cross-linking, enrichment of quaternary ammonium cation groups in the side chains and constructing efficient ionic channels by hydrophilic/hydrophobic phase segregation morphological structure like Nafion® membranes to enhance the mobility of OH-. The strategies mentioned above can all realize high ion conductivity and low water uptake and swelling at the same time to some extent.

     

  • loading
  • [1]
    Asazawa K, Yamada K, Tanaka H, et al.A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles[J].Angewandte Chemie International Edition, 2007, 46(42):8024-8027.
    [2]
    Sheng W C, Bivens A P, Myint M, et al.Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes[J].Energy and Environmental Science, 2014, 7(5):1719-1724.
    [3]
    Deavin O I, Murphy S, Ong A L, et al.Anion-exchange membranes for alkaline polymer electrolyte fuel cells:Comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups[J].Energy and Environmental Science, 2012, 5(9):8584-8597.
    [4]
    Gu S, Cai R, Luo T, et al.Quaternary phosphonium-based polymers as hydroxide exchange membranes[J].ChemSusChem, 2010, 3(5):555-558.
    [5]
    Gu S, Cai R, Luo T, et al.A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells[J].Angewandte Chemie International Edition, 2009, 48(35):6499-6502.
    [6]
    Wang J H, Gu S, Kaspar R B, et al.Stabilizing the imidazolium cation in hydroxide-exchange membranes for fuel cells[J].ChemSusChem, 2013, 6(11):2079-2082.
    [7]
    Poynton S D, Slade R C T, Omasta T J, et al.Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells[J].Journal of Materials Chemistry A, 2014, 2(14):5124-5130.
    [8]
    Lin X C, Varcoe J R, Poynton S D, et al.Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells[J].Journal of Materials Chemistry A, 2013, 1(24):7262-7269.
    [9]
    Li N W, Guiver M D, Binder W H.Towards high conductivity in anion-exchange membranes for alkaline fuel cells[J].ChemSusChem, 2013, 6(8):1376-1383.
    [10]
    Lu S F, Pan J, Huang A B, et al.Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts[J].Proceedings of the National Academy of Sciences, 2008, 105(52):20611-20614.
    [11]
    Pan J, Lu S F, Li Y, et al.High-performance alkaline polymer electrolyte for fuel cell applications[J].Advanced Functional Materials, 2010, 20(2):312-319.
    [12]
    Varcoe J R, Atanassov P, Dekel D R, et al.Anion-exchange membranes in electrochemical energy systems[J].Energy and Environmental Science, 2014, 7(10):3135-3191.
    [13]
    侯宏英.碱性固体燃料电池碱性聚合物电解质膜的最新研究进展[J].物理化学学报, 2014, 30(8):1393-1407. Hou H Y.Recent research progress in alkaline polymer electrolyte membranes for alkaline solid fuel cells[J].Acta Physico-Chimica Sinica, 2014, 30(8):1393-1407(in Chinese).
    [14]
    Tanaka M, Fukasawa K, Nishino E, et al.Anion conductive block poly(arylene ether)s:Synthesis, properties, and application in alkaline fuel cells[J].Journal of the American Chemical Society, 2011, 133(27):10646-10654.
    [15]
    Robertson N J, Kostalik H A, Clark T J, et al.Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications[J].Journal of the American Chemical Society, 2010, 132(10):3400-3404.
    [16]
    Tanaka M, Koike M, Miyatake K, et al.Anion conductive aromatic ionomers containing fluorenyl groups[J].Macromolecules, 2010, 43(6):2657-2659.
    [17]
    Hibbs M R, Fujimoto C H, Cornelius C J.Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells[J].Macromolecules, 2009, 42(21):8316-8321.
    [18]
    Clark T J, Robertson N J, Kostalik IV H A, et al.A ring-opening metathesis polymerization route to alkaline anion exchange membranes:Development of hydroxide-conducting thin films from an ammonium-functionalized monomer[J].Journal of the American Chemical Society, 2009, 131(36):12888-12889.
    [19]
    Pan J, Chen C, Zhuang L, et al.Designing advanced alkaline polymer electrolytes for fuel cell applications[J].Accounts of Chemical Research, 2011, 45(3):473-481.
    [20]
    Wang X, Li M Q, Golding B T, et al.A polytetrafluoroethylene-quaternary1, 4-diazabicyclo-[2.2.2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells[J].International Journal of Hydrogen Energy, 2011, 36(16):10022-10026.
    [21]
    Jung H, Fujii K, Tamaki T, et al.Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells[J].Journal of Membrane Science, 2011, 373(1-2):107-111.
    [22]
    Zhang F X, Zhang H M, Ren J X, et al.PTFE based composite anion exchange membranes:Thermally induced in situ polymerization and direct hydrazine hydrate fuel cell application[J].Journal of Materials Chemistry, 2010, 20(37):8139-8146.
    [23]
    Luo Y T, Guo J C, Wang C S, et al.Fuel cell durability enhancement by crosslinking alkaline anion exchange membrane electrolyte[J].Electrochemistry Communications, 2012, 16(1):65-68.
    [24]
    Gubler L.Polymer design strategies for radiation-grafted fuel cell membranes[J].Advanced Energy Materials, 2014, 4(3):DOI: 10.1002/aenm.201300827.
    [25]
    Pan J, Li Y, Zhuang L, et al.Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90℃[J].Chemical Communications, 2010, 46(45):8597-8599.
    [26]
    潘婧, 谭力盛, 庄林, 等.可在90℃工作的自交联碱性聚合物电解质膜的制备及表征[J].中国科学:化学, 2011, 41(12):1848-1856. Pan J, Tan L S, Zhuang L, et al.Synthesis and characterization of self-crosslinked alkaline polymer electrolytes operable at 90℃[J].Scientia Sinica:Chimica, 2011, 41(12):1848-1856(in Chinese).
    [27]
    Lin X C, Liu Y B, Poynton S D, et al.Cross-linked anion exchange membranes for alkaline fuel cells synthesized using a solvent free strategy[J].Journal of Power Sources, 2013, 233:259-268.
    [28]
    Wang J J, He G H, Wu X M, et al.Crosslinked poly (ether ether ketone) hydroxide exchange membranes with improved conductivity[J].Journal of Membrane Science, 2014, 459:86-95.
    [29]
    Katzfuβ A, Gogel V, Jörissen L, et al.The application of covalently cross-linked BrPPO as AEM in alkaline DMFC[J].Journal of Membrane Science, 2013, 425-426:131-140.
    [30]
    Wang W P, Wang S B, Li W W, et al.Synthesis and characterization of a fluorinated cross-linked anion exchange membrane[J].International Journal of Hydrogen Energy, 2013, 38(25):11045-11052.
    [31]
    Zhang S M, Li C P, Xie X F, et al.Novel cross-linked anion exchange membranes with diamines as ionic exchange functional groups and crosslinking groups[J].International Journal of Hydrogen Energy, 2014, 39(25):13718-13724.
    [32]
    Wang L Z, Hickner M A.Low-temperature crosslinking of anion exchange membranes[J]. Polymer Chemistry, 2014, 5(8):2928-2935.
    [33]
    Pan J, Li Y, Han J J, et al.A strategy for disentangling the conductivity-stability dilemma in alkaline polymer electrolytes[J].Energy and Environmental Science, 2013, 6(10):2912-2915.
    [34]
    Si J J, Lu S F, Xu X, et al.A gemini quaternary ammonium poly(ether ether ketone) anion-exchange membrane for alkaline fuel cell:Design, synthesis, and properties[J].ChemSusChem, 2014, 7(12):3389-3395.
    [35]
    Li Q, Liu L, Miao Q Q, et al.A novel poly (2, 6-dimethyl-1, 4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes[J].Chemical Communications, 2014, 50(21):2791-2793.
    [36]
    Ran J, Wu L, Xu T W.Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers[J].Polymer Chemistry, 2013, 4(17):4612-4620.
    [37]
    Mauritz K A, Moore R B.State of understanding of nafion[J].Chemical Reviews, 2004, 104(10):4535-4586.
    [38]
    Rebeck N T, Li Y F, Knauss D M.Poly (phenylene oxide) copolymer anion exchange membranes[J].Journal of Polymer Science Part B:Polymer Physics, 2013, 51(24):1770-1778.
    [39]
    Li Q, Liu L, Miao Q Q, et al.Hydroxide-conducting polymer electrolyte membranes from aromatic aba triblock copolymers[J].Polymer Chemistry, 2014, 5(7):2208-2213.
    [40]
    Tsai T-H, Maes A M, Vandiver M A, et al.Synthesis and structure-conductivity relationship of polystyrene-block-poly (vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells[J].Journal of Polymer Science Part B:Polymer Physics, 2013, 51(24):1751-1760.
    [41]
    Disabb-Miller M L, Johnson Z D, Hickner M A.Ion motion in anion and proton-conducting triblock copolymers[J].Macromolecules, 2013, 46(3):949-956.
    [42]
    Price S C, Ren X M, Jackson A C, et al.Bicontinuous alkaline fuel cell membranes from strongly self-segregating block copolymers[J].Macromolecules, 2013, 46(18):7332-7340.
    [43]
    Li N W, Yan T Z, Li Z, et al.Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes[J].Energy and Environmental Science, 2012, 5(7):7888-7892.
    [44]
    Li N W, Leng Y J, Hickner M A, et al.Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells[J].Journal of the American Chemical Society, 2013, 135(27):10124-10133.
    [45]
    Li N W, Wang L Z, Hickner M.Cross-linked comb-shaped anion exchange membranes with high base stability[J].ChemicalCommunications, 2014, 50(31):4092-4095.
    [46]
    Rao A H N, Nam S Y, Kim T-H.Comb-shaped alkyl imidazolium-functionalized poly(arylene ether sulfone)s as high performance anion-exchange membranes[J].Journal of Materials Chemistry A, 2015, 3(16):8571-8580.
    [47]
    Pan J, Chen C, Li Y, et al.Constructing ionic highway in alkaline polymer electrolytes[J].Energy and Environmental Science, 2014, 7(1):354-360.
    [48]
    He S S, Frank C W.Facilitating hydroxide transport in anion exchange membranes via hydrophilic grafts[J].Journal of Materials Chemistry A, 2014, 2(39):16489-16497.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1050) PDF downloads(568) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return