Gao Yuanyang, Qian Yonggang, Wang Wenjieet al. Game behaviors and efficiency analysis under Chinese pricing system of military aviation products[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(05): 536-539. (in Chinese)
Citation: PENG Cheng, WANG Xinmin, XIE Rong, et al. Fault-tolerant control for hypersonic vehicle with system uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1414-1421. doi: 10.13700/j.bh.1001-5965.2015.0462(in Chinese)

Fault-tolerant control for hypersonic vehicle with system uncertainty

doi: 10.13700/j.bh.1001-5965.2015.0462
  • Received Date: 09 Jul 2015
  • Publish Date: 20 Jul 2016
  • For the systems with norm-bounded parameter uncertainty and actuator failure faults, a robust fault-tolerant tracking control method is presented. In this method, the linear matrix inequalities (LMI) which guarantee the stability of the closed-loop system and meet the demand of the robust performance were derived utilizing the bounded real lemma. In order to reduce the conservativeness of the designed controller, the different Lyapunov variables were adopted under different system fault states. An iterative LMI algorithm is developed to solve the resulting non-convex optimization problem caused by the use of different Lyapunov variables. Since the convergence of the iterative algorithm lies on the choice of the initial values, an efficient way to find a good initial value was given after derivation. The method was applied to the design of the hypersonic vehicle X-33 tracking controller. Simulation results show that the proposed method is available and effective.

     

  • [1]
    JI Y,ZHOU H L,ZONG Q.Adaptive active fault-tolerant control of generic hypersonic flight vehicles[J].Journal of Systems and Control Engineering,2015,229(2):130-138.
    [2]
    ZHANG P,LIU H H T,LI X B,et al.Fault tolerance of cooperative interception using multiple flight vehicles[J].Journal of the Franklin Institute,2013,350(9):2373-2395.
    [3]
    傅强.航空发动机被动容错控制系统鲁棒性设计[J].测控技术,2013,32(5):32-34.FU Q. Robustness design of passive fault tolerant control system for aero engine[J].Measurement & Control Technology, 2013,32(5):32-34(in Chinese).
    [4]
    张爱华,胡庆雷,霍星,等.过驱动航天器飞轮故障重构与姿态容错控制[J].宇航学报,2013,34(3):369-376.ZHANG A H,HU Q L,HUO X,et al.Fault reconstruction and fault tolerant attitude control for over-activated spacecraft under reaction wheel failure[J].Journal of Astronautics,2013, 34(3):369-376(in Chinese).
    [5]
    CHEN F Y,WANG Z,TAO G,et al. Robust adaptive fault-tolerant control for hypersonic flight vehicles with multiple faults[J].Journal of Aerospace Engineering,2015,28(4):04014111.
    [6]
    HE J J,QI R Y,JIANG B.Adaptive fault-tolerant control design for hypersonic flight vehicles based on feedback linearization[C]//33rd Chinese Control Conference.Piscataway,NJ: IEEE Press,2014:3197-3202.
    [7]
    YANG G H,ZHANG S Y,LAM J,et al.Reliable control using redundant controllers[J].IEEE Transactions on Automatic Control,1998,43(11):1588-1593.
    [8]
    PANZA S,LOVERA M.Rotor state feedback in helicopter flight control: Robustness and fault tolerance[C]//2014 IEEE Conference on Control Applications.Piscataway,NJ:IEEE Press,2014:451-456.
    [9]
    陈雪芹,耿云海,张迎春,等.基于LMI的鲁棒容错控制及其在卫星姿态控制中的应用[J].控制理论与应用,2008,25(1):95-99.CHEN X Q,GENG Y H,ZHANG Y C,et al.Robust fault-tolerant control based on LMI approach and application in satellite attitude control system[J].Control Theory & Applications,2008,25(1):95-99(in Chinese).
    [10]
    陈明,童朝南.不确定系统鲁棒容错控制的LMI设计方法[J].控制与决策,2009,24(4):526-531.CHEN M,TONG C N.LMI approach to robust fault-tolerant H-infinity control for uncertain systems[J].Control and Decision,2009,24(4): 526-531(in Chinese).
    [11]
    杨冬梅,孙俊娜.不确定时滞线性离散系统的鲁棒容错控制[J].东北大学学报(自然科学版),2012,33(2):161-164.YANG D M,SUN J N.Robust fault tolerant control for uncertain linear discrete systems with time-delay[J].Journal of Northeastern University(Natural Science),2012,33(2):161-164(in Chinese).
    [12]
    YE S J,ZHANG Y M,WANG X M,et al.An improved LMI approach for static output feedback fault-tolerant control with application to flight tracking control[C]//4th IEEE Conference on Industrial Electronics and Applications.Piscataway,NJ:IEEE Press,2009:35-40.
    [13]
    欧阳高翔,倪茂林,孙承启.视故障为结构不确定项的鲁棒可靠跟踪控制器设计[J].控制理论与应用,2009,26(1): 80-84.OUYANG G X,NI M L,SUN C Q.Robust reliable tracking controller design when the fault is viewed as a structural uncertainty[J].Control Theory & Applications,2009,26(1):80-84 (in Chinese).
    [14]
    ZHANG Q J,YE S J,LI Y,et al.An enhanced LMI approach for mixed H2/H flight tracking control[J].Chinese Journal of Aeronautics,2011,24(3):324-328.
    [15]
    王明昊,刘刚,杨述华.高超声速飞行器的多胞LPV系统控制器设计[J].空间控制技术与应用,2013,39(1):15-22.WANG M H,LIU G,YANG S H.Polytopic-LPV-system-based control design for hypersonic vehicle[J].Aerospace Control and Application,2013,39(1):15-22(in Chinese).
    [16]
    XIE L.Output feedback H control of systems with parameter uncertainty[J].International Journal of Control,1996,63(4): 741-750.
    [17]
    俞立,陈国定,杨马英.不确定系统具有圆盘区域极点约束的鲁棒控制[J].自动化学报,2000,26(l):116-120.YU L,CHEN G D,YANG M Y.Robust control of uncertain linear system with disk pole constraints[J].Acta Automatica Sinica,2000,26(l):116-120(in Chinese).
    [18]
    HAN X D,LIU J G,XIE D X,et al.Robust H guaranteed cost satisfactory fault-tolerant control for discrete-time systems with quadratic D stabilizability[J].Journal of Systems Engineering and Electronics,2010,21(3):496-502.
    [19]
    HE Y,WANG Q G.An improved ILMI method for static output feedback control with application to multivariable PID control[J].IEEE Transactions on Automatic Control,2006,51(10): 1678-1683.
    [20]
    CAO Y Y,LAM J,SUN Y X.Static output feedback stabilization: An ILMI approach[J].Automatica,1998,34(12):1641-1645.
    [21]
    HOLLIS B R,THOMPSON R A,MURPHY K J,et al.X-33 aerodynamic computations and comparisons with wind-tunnel data[J].Journal of Spacecraft and Rockets,2001,38(5):684-691.
  • Relative Articles

    [1]DOU L,LI X K,ZHANG H L,et al. Fixed time trajectory tracking control of forward-tilting morphing aerospace vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1005-1017 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0152.
    [2]WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0965.
    [3]LIU X L,LI J K. Iterative learning control of electric load simulator of aircraft steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2727-2738 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0711.
    [4]YANG F,LIN M Y,HU Z M,et al. Prediction method of aero-heating of hypersonic vehicle bi-curvature leading edge based on machine learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2826-2834 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0746.
    [5]MENG Z P,YANG L Q,WANG B,et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2449-2460 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0698.
    [6]WANG H B,HE H,ZOU H J,et al. Nonlinear backstepping control of special EHA for rail grinding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2439-2448 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0681.
    [7]QUAN Q,CHEN L. Control of non-affine nonlinear systems: A survey[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2367-2381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0642.
    [8]GE Jian-hao, GUO Jie, WANG Hao-ning, ZHANG Bao-chao, WAN Yang-yang, TANG Sheng-jing. Adaptive model predictive control for hypersonic morphing gliding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0081
    [9]ZHANG X,LU X W,LAI L J. Large-stroke microposition stage driven by reluctance actuator and its trajectory tracking control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2852-2861 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0702.
    [10]ZHANG Q C,WANG L,XI J X,et al. Tracking control of unmanned aerial vehicle swarms with leader-following double formation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2331-2342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0607.
    [11]CHEN Qing-yang, XIN Hong-bo, LU Ya-fei, WANG Peng, WANG Yu-jie, ZHENG Jun-fei. Ground Taxiing Lateral Deviation Correction Control for High Subsonic UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0635
    [12]YANG B,LIU C F,YU H,et al. A method for analyzing angle measurement error of radar on hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3666-3676 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0879.
    [13]JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0666.
    [14]CAI H,SHI P. Attitude control method for flexible spacecraft based on LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3921-3929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0880.
    [15]LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035.
    [16]TANG Y C,ZHU Q H,LIU F C,et al. Design of robust controller for single outrigger of vibration active isolation platform based on LPV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1796-1801 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0513.
    [17]DUAN B,YANG S,LI A J. Design of LPV control law for unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):879-890 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0340.
    [18]ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416.
    [19]YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053
    [20]PENG Weishi. Evaluation of high hitting accuracy performance of hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094
  • Cited by

    Periodical cited type(15)

    1. 张飞桥,张亦驰,严皓. 基于改进卷积网络的终端区4D航迹预测与冲突检测. 科学技术与工程. 2024(05): 2150-2157 .
    2. 吴明功,毕可心,温祥西,孙继昆. 基于飞行冲突网络最优支配集的冲突调配策略. 北京航空航天大学学报. 2023(02): 242-253 . 本站查看
    3. 岳仁田,马赵飞. 基于几何关系的无人机低空飞行冲突探测与解脱策略. 中国安全科学学报. 2023(05): 112-120 .
    4. 郭华,郭小和. 改进速度障碍法的无人机局部路径规划算法. 航空学报. 2023(11): 271-281 .
    5. 杨建航,张福彪,王江. 基于可达集的无人机低空飞行冲突解脱算法. 北京航空航天大学学报. 2023(07): 1813-1827 . 本站查看
    6. 王尔申,宋远上,佟刚,王传云,曲萍萍,徐嵩. 基于SVM的低空飞行冲突探测改进模型. 北京航空航天大学学报. 2022(01): 8-14 . 本站查看
    7. 张宏宏,甘旭升,孙静娟,王宁,陈致远. 针对合作型无人机的最优防相撞策略. 计算机工程与应用. 2022(04): 290-297 .
    8. 高扬,郭钒,陈靖淞,李高磊,王向章. 融合空域无人机与有人机冲突风险预测与解脱. 安全与环境学报. 2022(06): 3288-3294 .
    9. 牛胜华,韩佩. 智能巡查机器人自主避撞系统设计. 电子设计工程. 2021(04): 155-158+163 .
    10. 王红勇,邓涛涛,徐文强. 基于调速的飞行冲突探测与解脱方法. 科学技术与工程. 2021(13): 5584-5591 .
    11. 王新语,夏侯云翔,王耀锐. 基于复杂网络的空中交通流量控制系统设计. 自动化技术与应用. 2021(09): 137-141+151 .
    12. 杨文达,吴明功,温祥西,毕可心,蒋旭瑞. 基于速度障碍法的三维确定型冲突探测模型. 西华大学学报(自然科学版). 2021(06): 1-6 .
    13. 焦卫东,姚军强,王瑞冬. 基于凸包围盒的飞行冲突检测算法. 中国安全科学学报. 2021(12): 32-38 .
    14. 张宏宏,甘旭升,李昂,高志强,徐鑫宇. 基于速度障碍法的无人机避障与航迹恢复策略. 系统工程与电子技术. 2020(08): 1759-1767 .
    15. 徐鹏,康雪晶. 改进互动速度障碍的多机器人协同避障. 自动化与仪表. 2020(09): 35-39 .

    Other cited types(22)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(909) PDF downloads(603) Cited by(37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return