Volume 42 Issue 12
Dec.  2017
Turn off MathJax
Article Contents
QIN Yunpeng, LIU Peiqing, QU Qiulin, et al. Numerical simulation to static ground effect of delta wings with different sweep angles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2669-2675. doi: 10.13700/j.bh.1001-5965.2015.0844(in Chinese)
Citation: QIN Yunpeng, LIU Peiqing, QU Qiulin, et al. Numerical simulation to static ground effect of delta wings with different sweep angles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2669-2675. doi: 10.13700/j.bh.1001-5965.2015.0844(in Chinese)

Numerical simulation to static ground effect of delta wings with different sweep angles

doi: 10.13700/j.bh.1001-5965.2015.0844
Funds:

National Natural Science Foundation of China 11302015

National Natural Science Foundation of China 11272034

Aeronautical Science Foundation of China 2015ZA51012

More Information
  • Corresponding author: Tel.:010-82315463, E-mail:qql@buaa.edu.cn
  • Received Date: 22 Dec 2015
  • Accepted Date: 18 Mar 2016
  • Publish Date: 20 Dec 2017
  • In this paper, the static ground effect of delta wings with different sweep angles is investigated by numerical simulation. The analyses of aerodynamic force and flow field characteristics show that in ground effect, the "block effect" of ground enhances the windward surface pressure; with the sweep angle decreasing, the "block effect" will be further strengthened, and thus the windward surface aerodynamic force increments due to ground effect increase. Besides, the leeward surface aerodynamic force increments due to ground effect also increase with the sweep angle decreasing, but flow physics is not the same for different sweep angles:for medium and high sweep angles, the leeward surface aerodynamic force increments due to ground effect are attributed to the increase of the suction induced by the enhanced leading edge vortex; for low sweep angles, they are attributed to the suction area extension, which results from the movement of the dispersive leading edge vortex.

     

  • loading
  • [1]
    QU Q L, WANG W, LIU P Q, et al.Airfoil aerodynamics in ground effect for wide range of angles of attack[J].AIAA Journal, 2015, 53(4):1048-1061. doi: 10.2514/1.J053366
    [2]
    CORDA S, STEPHENSON M T, BURCHAM F W, et al.Dynamic ground effects flight test of an F-15 aircraft:N95-33024[R].Washington, D.C.:NASA, 1994.
    [3]
    ROZHDESTVENSKY K V.Wing-in-ground effect vehicles[J].Progress in Aerospace Sciences, 2006, 42(3):211-283. doi: 10.1016/j.paerosci.2006.10.001
    [4]
    QU Q L, JIA X, WANG W, et al.Numerical study of the aerodynamics of a NACA 4412 airfoil in dynamic ground effect[J].Aerospace Science and Technology, 2014, 38:56-63. doi: 10.1016/j.ast.2014.07.016
    [5]
    SCHWEIKHARD W.A method for in-flight measurement of ground effect on fixed-wing aircraft[J].Journal of Aircraft, 1967, 4(2):101-104. doi: 10.2514/3.43804
    [6]
    BAKER P A, SCHWEIKHARD W G, YOUNG W R.Flight evaluation of ground effect on several low-aspect-ratio airplanes:NASA-TN-D-6053[R].Washington, D.C.:NASA, 1970.
    [7]
    CURRY R E.Dynamic ground effect for a cranked arrow wing airplane:AIAA-1997-3649[R].Reston:AIAA, 1997.
    [8]
    CHANG R C, MUIRHEAD V U.Investigation of dynamic ground effect:N87-24410[R].Washington, D.C.:NASA, 1987.
    [9]
    CHANG R C, MUIRHEAD V U.Effect of sink rate on ground effect of low-aspect-ratio wings[J].Journal of Aircraft, 1987, 24(3):176-180. doi: 10.2514/3.45413
    [10]
    CHANG R C.An experimental investigation of dyanmic ground effect[D].Lawrence, KS:University of Kansas, 1985.
    [11]
    LEE P H, LAN C E, MUIRHEAD V U.An experimental investigation of dynamic ground effect:NASA-CR-4105[R].Washington, D.C.:NASA, 1987.
    [12]
    LEE P H, LAN C E, MUIRHEAD V U.Experimental investigation of dynamic ground effect[J].Journal of Aircraft, 1989, 26(6):497-498. doi: 10.2514/3.45793
    [13]
    QU Q L, LU Z, GUO H, et al.Numerical investigation of the aerodynamics of a delta wing in ground effect[J].Journal of Aircraft, 2014, 52(1):329-340. http://or.nsfc.gov.cn/handle/00001903-5/181352
    [14]
    SPALART P, ALLMARAS S.A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R].Reston:AIAA, 1992.
    [15]
    MORTON S.Detached-eddy simulations of vortex breakdown over a 70-degree delta wing[J].Journal of Aircraft, 2009, 46(3):746-755. doi: 10.2514/1.4659
    [16]
    CUMMINGS R M, SCHÜTTE A.Detached-eddy simulation of the vortical flow field about the VFE-2 delta wing[J].Aerospace Science and Technology, 2013, 24(1):66-76. doi: 10.1016/j.ast.2012.02.007
    [17]
    QIN Y P, QU Q L, LIU P Q, et al.DDES study of the aerodynamic forces and flow physics of a delta wing in static ground effect[J].Aerospace Science and Technology, 2015, 43:423-436. doi: 10.1016/j.ast.2015.04.004
    [18]
    RIOU J, GARNIER E, BASDEVANT C.Compressibility effects on the vortical flow over a 65° sweep delta wing[J].Physics of Fluids, 2010, 22:035102. doi: 10.1063/1.3327286
    [19]
    RODRIGUEZ O.Experimental investigations on the VFE-2 configuration at ONERA:RTO-TR-AVT-113 AC/323(AVT-113) TP/246[R].Washington, D.C.:NASA, 2009.
    [20]
    FRITZ W.Numerical solutions for the VFE-2 configuration on structured grids at EADS-MAS:RTO-TR-AVT-113 AC/323(AVT-113) TP/246[R].Washington, D.C.:NASA, 2009.
    [21]
    CHEN M Q, LIU P Q, GUO H, et al.Effect of sideslip on high-angle-of-attack vortex flow over close-coupled canard configuration[J].Journal of Aircraft, 2015, 53(1):1-14. doi: 10.2514/1.C033305
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(774) PDF downloads(626) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return