Citation: | WANG Longfang, HE Weiliang. Parafoil aerodynamic deformation simulation based on cable-membrane finite element model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 47-52. doi: 10.13700/j.bh.1001-5965.2016.0017(in Chinese) |
The fluid-structure coupling deformation of the parafoil was numerically simulated under steady condition. The finite volume method was used to compute the aerodynamic load, and the effect of leading-edge cut and ribs on the pressure distribution was analyzed simultaneously. Nonlinear cable-membrane finite element model was established based on the large displacement-small strain characteristics of parafoil structure. Canopy was modeled by membrane element which was unable to bear bending moment, and ropes and reinforcing tapes were modeled by cable element which could only bear uniaxial tension. The deformation relative to ideal configuration and stress distribution of parafoil were simulated on aerodynamic load. The results show that the span decreases compared with design value in flight, the maximum thickness of airfoil profile increases after bumps appear, and extra angle of attack and sweepback arise from canopy deformation; the maximum equivalent stress is mainly concentrated around holes and rope joints of ribs, and reinforcing tapes must be arranged properly in order to satisfy the strength requirements.
[1] |
KALRO V,ALIABADI S,GARRARD W,et al.Parallel finite element simulation of large ram-air parachutes[J].International Journal for Numerical Methods in Fluids,1997,24(12):1353-1369. doi: 10.1002/(ISSN)1097-0363
|
[2] |
KALRO V, TEZDUYAR T E.A parallel 3D computational method for fluid-structure interactions in parachute systems[J].Computer Methods in Applied Mechnics and Engineering,2000,190(3-4):321-332. doi: 10.1016/S0045-7825(00)00204-8
|
[3] |
IBOS C,LACROIX C,GOY A,et al.Fluid-structure simulation of a 3D ram air parachute with SINPA software:AIAA-1999-1713[R].Reston:AIAA,1999.
|
[4] |
FOGELL N,SHERWIN S J,COTTER C J,et al. Fluid-structure interaction simulation of the inflated shape of ram-air parachutes[C]//Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA,2013:1-15.
|
[5] |
ALTMANN H. Fluid-structure interaction analysis of ram-air parafoil wings[C]//Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA,2015:1-10.
|
[6] |
朱旭,曹义华. 翼伞平面形状对翼伞气动性能的影响[J].航空学报,2011,32(11):1998-2007. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201111006.htm
ZHU X,CAO Y H.Numerical simulation of platform geometry effect on parafoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica,2011,32(11):1998-2007(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201111006.htm
|
[7] |
朱旭,曹义华.翼伞弧面下反角、翼型和前缘切口对翼伞气动性能的影响[J].航空学报,2012,33(7):1189-1200. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201207005.htm
ZHU X,CAO Y H. Effects of arc-anhedral angle,airfoil and leading edge cut on parafoil aerodynamic performance[J].Acta Aeronautica et Astronautica Sinica,2012,33(7):1189-1200(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201207005.htm
|
[8] |
陆伟伟,张红英,连亮.大型翼伞的三维气动性能分析[J].航天返回与遥感,2015,36(3):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201503002.htm
LU W W,ZHANG H Y,LIAN L. A three-dimensional analysis on aerodynamic performance of a large parafoil[J].Spacecraft Recovery & Remote Sensing,2015,36(3):1-10(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201503002.htm
|
[9] |
张春,曹义华.基于弱耦合的翼伞气动变形数值模拟[J].北京航空航天大学学报,2013,39(5):605-609. http://bhxb.buaa.edu.cn/CN/abstract/abstract12611.shtml
ZHANG C,CAO Y H.Numerical simulation of parafoil aerodynamics and structural deformation based on loose coupled method[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(5):605-609(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12611.shtml
|
[10] |
BALAJI R,MITTAL S,RAI A K. Effect of leading edge cut on the aerodynamics of ram-air parachutes[J].International Journal for Numerical Methods in Fluids,2005,47(1):1-17. doi: 10.1002/(ISSN)1097-0363
|
[11] |
MOHAMMADI M A,JOHARI H. Computation of flow over a high-performance parafoil canopy[J].Journal of Aircraft,2010,47(4):1338-1345. doi: 10.2514/1.47363
|
[12] |
毛国栋.膜索结构设计方法研究[D].杭州:浙江大学,2004:29-30.
MAO G D.The design investigation of cable-reinforced membrane structures[D].Hangzhou:Zhejiang University,2004:29-30(in Chinese).
|
[13] |
王勖成.有限单元法[M].北京:清华大学出版社,2003:629-631.
WANG X C.Finite element method[M].Beijing:Tsinghua University Press,2003:629-631(in Chinese).
|
[14] |
唐建民,卓家寿.悬索结构大位移分析改进的两节点索单元[J].河海大学大学学报(自然科学版),1999,27(4):16-19. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX199904003.htm
TANG J M,ZHUO J S.An improved two-node cable element for large deformation analysis of cable structures[J].Journal of Hohai University(Natural Sciences),1999,27(4):16-19(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX199904003.htm
|
[15] |
贾贺,荣伟,陈国良.基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J].航天返回与遥感,2009,30(1):15-20. http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200901004.htm
JIA H,RONG W,CHEN G L.The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J].Spacecraft Recovery & Remote Sensing,2009,30(1):15-20(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200901004.htm
|