Volume 43 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
FENG Xiao, JIA Yinghong, XU Shijieet al. Momentum equalization control of space robot with control moment gyroscopes for joint actuation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1191-1198. doi: 10.13700/j.bh.1001-5965.2016.0427(in Chinese)
Citation: FENG Xiao, JIA Yinghong, XU Shijieet al. Momentum equalization control of space robot with control moment gyroscopes for joint actuation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1191-1198. doi: 10.13700/j.bh.1001-5965.2016.0427(in Chinese)

Momentum equalization control of space robot with control moment gyroscopes for joint actuation

doi: 10.13700/j.bh.1001-5965.2016.0427
Funds:

National Natural Science Foundation of China 11272027

More Information
  • Corresponding author: JIA Yinghong, E-mail:jia_yingh@163.com
  • Received Date: 20 May 2016
  • Accepted Date: 02 Sep 2016
  • Publish Date: 20 Jun 2017
  • An angular momentum equalization control method was proposed for redundant space robot with scissored-pair control moment gyroscopes (CMGs) for joint actuation. This method utilizes the space robot's extra degrees of freedom to equalize momentum usage among arm links, thus achieving CMGs' simultaneous saturation and better trajectory tracking ability. A momentum equalization index was defined following the idea of equal momentum usage to achieve simultaneous CMGs saturation. A control technique was developed based on acceleration-level redundancy resolution and inverse dynamics control, with precious operational space tracking ability and momentum equalization index local minimization functionality. The local minimization of momentum equalization index serves as a means to use angular momenta as equally as possible, which decreases the possibility of non-simultaneous saturation and takes full advantage of the CMGs' angular momentum capacity. A planar three degree-of-freedom redundant manipulator was used in numerical simulation to verify the effectiveness of the control technique.

     

  • loading
  • [1]
    FLORES-ABAD A, MA O, PHAM K, et al.A review of space robotics technologies for on-orbit servicing[J].Progress in Aerospace Sciences, 2014, 68:1-26. doi: 10.1016/j.paerosci.2014.03.002
    [2]
    XU W, LIANG B, XU Y.Survey of modeling, planning, and ground verification of space robotic systems[J].Acta Astronautica, 2011, 68(11):1629-1649. https://www.researchgate.net/publication/251506854_Survey_of_modeling_planning_and_ground_verification_of_space_robotic_systems
    [3]
    VAFA Z.On the dynamics of space manipulators using the virtual manipulator, with applications to path planning[J].The Journal of the Astronautical Sciences, 1990, 38(4):441-472. https://www.researchgate.net/publication/4699146_On_the_Dynamics_of_Space_Manipulators_Using_the_Virtual_Manipulator_with_Applications_to_Path_Planning
    [4]
    TORRES M A, DUBOWSKY S.Minimizing spacecraft attitude disturbances in space manipulator systems[J].Journal of Guidance, Control, and Dynamics, 1992, 15(4):1010-1017. doi: 10.2514/3.20936
    [5]
    YOSHIDA K, HASHIZUME K, ABIKO S.Zero reaction maneuver:Flight validation with ETS-Ⅶ space robot and extension to kinematically redundant arm[C]//IEEE International Conference on Robotics and Automation, 2001 ICRA.Piscataway, NJ:IEEE Press, 2001, 1:441-446.
    [6]
    NENCHEV D N.Reaction null space of a multibody system with applications in robotics[J].Mechanical Sciences, 2013, 4(1):97-112. doi: 10.5194/ms-4-97-2013
    [7]
    PECK M, PALUSZEK M, THOMAS S, et al.Control-moment gyroscopes for joint actuation:A new paradigm in space robotics[C]//1st Space Exploration Conference:Continuing the Voyage of Discovery, American Institute of Aeronautics and Astronautics Inc.Reston:AIAA, 2005, 1:204-233.
    [8]
    PECK M A.Low-power, high-agility space robotics[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston:AIAA, 2005:1-12.
    [9]
    OSUKA K, YOSHIDA K, ONO T.New design concept of space manipulator:A proposal of torque-unit manipulator[C]//Proceedings of the 33rd IEEE Conference on Decision and Control.Piscataway, NJ:IEEE Press, 1994, 2:1823-1825.
    [10]
    HOKAMOTO S.Torque unit manipulator driven by control moment gyros[J].Advances in the Astronautical Sciences, 1997, 96:865-876. https://www.researchgate.net/publication/271412630_Torque-Unit-Manipulator_Driven_by_Control_Moment_Gyros
    [11]
    CARPENTER M D, PECK M A.Reducing base reactions with gyroscopic actuation of space-robotic systems[J].IEEE Transactions on Robotics, 2009, 25(6):1262-1270. doi: 10.1109/TRO.2009.2032953
    [12]
    CARPENTER M D, PECK M A.Minimum-power robotic maneuvering using control-moment gyroscopes[C]//AIAA Guidance, Navigation, and Control Conference 2007.Reston:AIAA, 2007:210-222.
    [13]
    CARPENTER M D, PECK M A.Power-optimal steering of a space robotic system driven by control-moment gyroscopes[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston:AIAA, 2008.
    [14]
    BROWN D.Control moment gyros as space-robotics actuators[C]//AIAA Guidance, Navigation and Control Conference and Exhibit.Reston:AIAA, 2008.
    [15]
    BROWN D, PECK M.Energetics of control moment gyroscopes as joint actuators[J].Journal of Guidance, Control, and Dynamics, 2009, 32(6):1871-1883. doi: 10.2514/1.42313
    [16]
    贾英宏, 赵楠, 徐世杰.控制力矩陀螺驱动的空间机器人轨迹跟踪控制[J].北京航空航天大学学报, 2014, 41(3):285-291. http://bhxb.buaa.edu.cn/CN/abstract/abstract12863.shtml

    JIA Y H, ZHAO N, XU S J.Trajectory tracking control of space robot actuated by control moment gyroscopes[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 41(3):285-291(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12863.shtml
    [17]
    赵楠, 贾英宏, 徐世杰.无反作用力矩空间机器人轨迹跟踪控制[J].中国空间科学技术, 2014, 34(2):13-21. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201402003.htm

    ZHAO N, JIA Y H, XU S J.Trajectory tracking control of a reactionless space robot[J].Chinese Space Science and Technology, 2014, 34(2):13-21(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201402003.htm
    [18]
    SICILIANO B, SCIAVICCO L, VILLANI L, et al.Robotics:Modelling, planning and control[M].Berlin:Springer Science & Business Media, 2010:305, 348.
    [19]
    KANE T R, LEVINSON D A.Dynamics, theory and applications[M].New York:McGraw Hill, 1985:106, 158-159.
    [20]
    胡权, 贾英宏, 徐世杰.多体系统动力学Kane方法的改进[J].力学学报, 2011, 43(5):968-972. doi: 10.6052/0459-1879-2011-5-lxxb2010-856

    HU Q, JIA Y H, XU S J.An improved Kane's method for multibody dynamics[J].Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5):968-972(in Chinese). doi: 10.6052/0459-1879-2011-5-lxxb2010-856
    [21]
    JIA Y H, XU S J.Spacecraft attitude tracking and energy storage using flywheels[J].Chinese Journal of Aeronautics, 2005, 18(1):1-7. doi: 10.1016/S1000-9361(11)60274-4
    [22]
    YOSHIKAWA T. Analysis and control of robot manipulators with redundancy[C]//Robotics Research:The First International Symposium.Cambridge, MA:MIT Press, 1984:735-747.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(1073) PDF downloads(566) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return