Volume 43 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
ZHOU Kai, LI Xudong, HU Zongmin, et al. Comparative study of thermal-chemical reaction models on simulation of hypervelocity flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1173-1181. doi: 10.13700/j.bh.1001-5965.2016.0474(in Chinese)
Citation: ZHOU Kai, LI Xudong, HU Zongmin, et al. Comparative study of thermal-chemical reaction models on simulation of hypervelocity flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1173-1181. doi: 10.13700/j.bh.1001-5965.2016.0474(in Chinese)

Comparative study of thermal-chemical reaction models on simulation of hypervelocity flow

doi: 10.13700/j.bh.1001-5965.2016.0474
Funds:

National Natural Science Foundation of China 11532014

More Information
  • Corresponding author: HU Zongmin, E-mail:huzm@imech.ac.cn
  • Received Date: 02 Jun 2016
  • Accepted Date: 07 Jul 2016
  • Publish Date: 20 Jun 2017
  • Hypervelocity flow is the high-speed high-temperature flow environment that space vehicles or capsules face when they reenter the atmospheric layer. An expansion tube is one of the few qualified test facilities on the ground to simulate it. Numerical simulation is presented as a powerful assistant tool for hypervelocity flow diagnosis and analysis. Thermal-chemical reaction model plays an important role in simulation of hypervelocity flow. Thermal-chemical reaction models of 5 and 11 species based on thermal equilibrium condition, and 5 species based on thermal nonequilibrium condition are applied on the numerical technique. A comparative study of the influence on the computation for double-wedge test model employed with the above three models has been conducted to evaluate their applicability. The results indicate that 5 species chemical model can meet the test gas simulation requirement, but 11 species chemical model must be taken into account for the acceleration gas. However, if the thermal nonequilibrium phenomenon is strong in the flow, we must employ the thermal-chemical nonequilibrium model to guarantee the reliability of the numerical simulation.

     

  • loading
  • [1]
    ANDERSON J D.Hypersonic and high temperature gas dynamics[M].New York:McGraw-Hill Book Company, 2006:449-461.
    [2]
    NEELY A J, MORGAN R G.The superorbital expansion tube concept, experiment and analysis[J].Aeronautical Journal, 1994, 98(973):97-105. doi: 10.1017/S0001924000050107
    [3]
    HORNUNG H G.Experimental hypervelocity flow simulation, needs, achievements, and limitations[C]//Proceedings of 1st Pacific International Conference on Aero-space Science and Technology.Tainan:National Cheng-Kung University, 1994:1-10.
    [4]
    RESLER E L, BLOXSOM D E.Very high Mach number flows by unsteady flow principles[M].New York:Cornell University Graduate School of Aeronautical Engineering, 1952:2-7.
    [5]
    TRIMPI R L.A preliminary theoretical study of the expansion tube:A new device for producing high-enthalpy short-duration hypersonic gas flows:NASA-TR-R133[R].Washington, D.C.:NASA, 1962. doi: 10.1007/978-3-319-23745-9_9/fulltext.html
    [6]
    PAULL A, STALKER R J, STRINGER I.Experiments on an expansion tube with a free piston driver[C]//Proceedings of 15th Aerodynamic Testing Conference.Reston:AIAA, 1988:173-178.
    [7]
    GILDFIND D E, MORGAN R G, MCGILVRAY M, et al. Simulation of high Mach number scramjet flow conditions using the X2 expansion tube:AIAA-2012-5954[R]. Reston:AIAA, 2012.
    [8]
    DUFRENE A, MACLEAN M, PARKER R, et al.Experimental characterization of the LENS expansion tunnel facility including blunt body surface heating:AIAA-2011-262[R]. Reston:AIAA, 2011.
    [9]
    周凯, 汪球, 胡宗民, 等.爆轰驱动膨胀管性能研究[J].航空学报, 2016, 37(3):810-816. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201603007.htm

    ZHOU K, WANG Q, HU Z M, et al.Performance study of a detonation-driven expansion tube[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(3):810-816(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201603007.htm
    [10]
    HOLLIS B R, PRABHU D K.Assessment of laminar, convective aeroheating prediction uncertainties for Mars entry vehicles[J].Journal of Spacecraft and Rockets, 2013, 50(1):56-68. doi: 10.2514/1.A32257
    [11]
    HOLDEN M S.Development of experimental facilities coupled with CFD to research key aerothermal phenomena in hypervelocity flight[C]//Proceedings of AIAA Aerospace Planes Meeting.Reston:AIAA, 2011:243-253.
    [12]
    SARMA G S R.Physico-chemical modelling in hypersonic flow simulation[J].Progress in Aerospace Sciences, 2000, 36(3):281-349. https://www.researchgate.net/publication/224784512_Physico_Chemical_Modelling_in_Hypersonic_Flow_Simulation
    [13]
    GNOFFO P A, GUPTA R N, SHINN J L.Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium:NASA-TP-2867[R].Washington, D.C.:NASA, 1989.
    [14]
    LOSEV S A, MAKAROV V N, NIKOLSKY V S.Thermochemical nonequilibrium kinetic models in strong shock waves on air:AIAA-1994-1990[R].Reston:AIAA, 1994.
    [15]
    BUCK M L, BENSON B R, SIERON T R, et al.Aerodynamic and performance analyses of a superorbital re-entry vehicle[J].Dynamics of Manned Lifting Planetary Entry, 1963, 15(2):376-407.
    [16]
    PARK C.Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen[J].Journal of Thermophysics and Heat Transfer, 1988, 2(1):8-16. doi: 10.2514/3.55
    [17]
    PARK C.The limits of two-temperature model:AIAA-2010-911[R].Reston:AIAA, 2010.
    [18]
    GUPTA R N, YOS J M, THOMPSON R A.A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K:NASA-TR-1232[R].Washington, D.C.:NASA, 1989.
    [19]
    柳军. 热化学非平衡流及其辐射现象的实验和数值计算研究[D]. 北京: 国防科学技术大学, 2004.

    LIU J.Experimental and numerical research on thermo-chemical nonequilibrium flow with radiation phenomenon[D].Beijing:National University of Defense Technology, 2004(in Chinese).
    [20]
    DUNN M G, KANG S.Theoretical and experimental studies of reentry plasmas:NASA-CR-2232[R].Washington, D.C.:NASA, 1973.
    [21]
    HU Z M, WANG C, JIANG Z L, et al.On the numerical technique for the simulation of hypervelocity test flows[J].Computer and Fluids, 2015, 106:12-18. doi: 10.1016/j.compfluid.2014.09.039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views(721) PDF downloads(575) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return