Volume 43 Issue 7
Jul.  2017
Turn off MathJax
Article Contents
LIU Pingchao, LIU Yanming, CHEN Sicheng, et al. Study of supersonic flow field control mechanism with micro jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1491-1500. doi: 10.13700/j.bh.1001-5965.2016.0515(in Chinese)
Citation: LIU Pingchao, LIU Yanming, CHEN Sicheng, et al. Study of supersonic flow field control mechanism with micro jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1491-1500. doi: 10.13700/j.bh.1001-5965.2016.0515(in Chinese)

Study of supersonic flow field control mechanism with micro jet

doi: 10.13700/j.bh.1001-5965.2016.0515
Funds:

Open foundation for State Key Laboratory of Automotive Safety and Energy of Tsinghua University KF14011

More Information
  • Corresponding author: LIU Yanming, E-mail: liuym@bit.edu.cn
  • Received Date: 14 Jun 2016
  • Accepted Date: 22 Jul 2016
  • Publish Date: 20 Jul 2017
  • An numerical investigation was conducted to study the influence of micro jet with different total injection pressure on the supersonic flow field (Ma=2.9) for a 24° compression corner. The ejecting direction is vertical to incoming flow. The results show that the velocity of the fluid downstream the micro jet decreases due to the obstruction of micro jet, and then the decrease can weaken the separation shock intensity. In addition, high-energy fluid is brought into the bottom of the boundary layer near the wall to activate it to be fuller with the downwash effect of counter-rotating vortex pair generated by coupling of micro jet and mainstream, which leads to the stronger ability of resisting adverse pressure and the separation of the boundary layer. The activation ability enhances with the increase of total injection pressure. Weighing the control result and injection power, we think the scheme is the best when the total injection pressure ratio (total injection pressure/total freestream pressure) is 0.60. The boundary layer separation area is restrained by nearly 70%, the distance of the intersection point of λ shock wave and the wall is reduced by almost 37%, and the separation shock intensity is weakened by nearly 12% under this scheme.

     

  • loading
  • [1]
    PIOTR D, RYSZARD S.Shock wave-boundary layer interaction control by streamwise vortices[C]//Proceedings of XXI ICTAM, 2004.
    [2]
    RYSZARD S.Shock wave induced separation control by streamwise vortices[J].Journal of Thermal Science, 2005, 14(3):249-254. doi: 10.1007/s11630-005-0009-z
    [3]
    RYSZARD S, PAWEL F, JAN S, et al.Shock wave-boundary layer interaction control by air-jet streamwise vortices[C]//Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, 2007:1-7.
    [4]
    KUMAR R, BOTU A, ALI M Y, et al.Virtual shock shaping using microjet arrays[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston:AIAA, 2010:1-8.
    [5]
    ALI M Y, AHMED K A, KUMAR R, et al.Flowfield characteristics of oblique shocks generated using microjet arrays[C]//AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston:AIAA, 2011, 6(3):1-15.
    [6]
    KUMAR R, ALI M Y, ALVI F S, et al.Generation and control of oblique shocks using microjets[J].AIAA Journal, 2011, 49(12):2751-2759. doi: 10.2514/1.J051148
    [7]
    ALI M Y, ALVI F S.Three-dimensional flowfield of microjets in supersonic crossflow[C]//43rd AIAA Fluid Dynamics Conference.Reston:AIAA, 2013.
    [8]
    ALI M Y, ALVI F S, MANISANKAR C, et al.Studies on the control of shock wave-boundary layer interaction using steady microactuators[C]//41st AIAA Fluid Dynamics Conference and Exhibit.Reston:AIAA, 2011.
    [9]
    ALI M Y, ALVI F S, KUMAR R, et al.Studies on the influence of steady microactuators on shock-wave/boundary-layer interaction[J].AIAA Journal, 2013, 51(12):2753-2762. doi: 10.2514/1.J052201
    [10]
    VERMA S B, MANISANKAR C.Shockwave/boundary-layer interaction control on a compression ramp using steady microjets[J].AIAA Journal, 2012, 50(12):2753-2764. doi: 10.2514/1.J051577
    [11]
    VERMA S B, MANISANKAR C, AKSHARA P.Control of shock-wave boundary layer interaction using steady micro-jets[J].Shock Waves, 2015, 25(5):535-543. doi: 10.1007/s00193-014-0508-5
    [12]
    SOUVEREIN L J, DEBIÉVE J F.Effect of air jet vortex generators on a shock wave boundary layer interaction[J].Experiments Fluids, 2010, 49(5):1053-1064. doi: 10.1007/s00348-010-0854-8
    [13]
    SOUVEREIN L J, DEBIÉVE J F.Effect on a shock wave boundary layer interaction of air jet vortex generators[J].Progress in Flight Physics, 2012, 3:141-156. doi: 10.1007/s00348-010-0854-8
    [14]
    YOUNG D D, JENKINS S A, MILLER D N.An investigation of active flowfield control for inlet shock/boundary layer interaction[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston:AIAA, 2013:1660-1670.
    [15]
    MATTHEW J R, PATRICK B, CHRISTOPHER W, et al.Experimental study of a Mach 3 compression ramp interaction at Reθ=2400[J]. AIAA Journal, 2009, 47(2):373-385. doi: 10.2514/1.38248
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views(741) PDF downloads(481) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return