Volume 43 Issue 7
Jul.  2017
Turn off MathJax
Article Contents
SHEN Shuangyan, JIN Xing, DENG Tongyeet al. Plasma assisted methane ignition under different diluent gas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1373-1379. doi: 10.13700/j.bh.1001-5965.2016.0544(in Chinese)
Citation: SHEN Shuangyan, JIN Xing, DENG Tongyeet al. Plasma assisted methane ignition under different diluent gas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1373-1379. doi: 10.13700/j.bh.1001-5965.2016.0544(in Chinese)

Plasma assisted methane ignition under different diluent gas

doi: 10.13700/j.bh.1001-5965.2016.0544
Funds:

National Natural Science Foundation of China 11372356

More Information
  • Corresponding author: JIN Xing, E-mail:jinxing_beijing@sina.com
  • Received Date: 23 Jun 2016
  • Accepted Date: 14 Oct 2016
  • Publish Date: 20 Jul 2017
  • Plasma could increase chemical and heat effect at the same time during the fuel reaction and it is expected to be an effective technical way of ignition assistance. Plasma assisted methane ignition experiment system was built based on shock tube. The methane ignition delay time of autoignition, under continuous discharge and when discharge is cut down was measured. The plasma's effect to shorten methane ignition delay under different diluent gas was analyzed. The plasma emission spectrum measurement system was built and the emission spectrum in discharge unit was measured. The active particle concentration is higher with higher ignition temperature under experimental condition. The methane ignition delay time could be shortened by 30% to 95% by a little discharge power ( < 4 W). The shortening effect of plasma is better when the ignition temperature is lower than 1 000 K or higher than 1 400 K with the diluent gas Ar. The shortening effect of plasma decreases with the increase of ignition temperature with the diluent gas N2.

     

  • loading
  • [1]
    XU B, SHI Z K.An overview on flight dynamic and control approaches for hypersonic vehicles[J]. Science China Information Sciences, 2015, 58(7):070201.
    [2]
    丁猛, 余勇, 梁剑寒, 等.碳氢燃料超燃冲压发动机点火技术试验[J].推进技术, 2004, 25(6):566-569. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS200904000.htm

    DING M, YU Y, LIANG J H, et al.Experimental investigation of ignition technology in liquid hydrocarbon fueled scramjet combustor[J]. Journal of Propulsion Technology, 2004, 25(6):566-569(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS200904000.htm
    [3]
    STARIKOVSKIY A, ALEKSANDROV N.Plasma-assisted ignition and combustion[J]. Progress in Energy and Combustion Science, 2013, 39(1):61-110. doi: 10.1016/j.pecs.2012.05.003
    [4]
    JU Y G, SUN W T.Plasma assisted combustion:Dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48:21-83. doi: 10.1016/j.pecs.2014.12.002
    [5]
    GUNDERSEN M.Energy-efficient transient plasma ignition and combustion:No.F49620-01-1-0322[R].[S.l.]:AFOSR, 2004.
    [6]
    KOSAREV I N, ALEKSANDROV N L, KINDYSHEVA S M, et al.Kinetic mechanism of plasma-assisted ignition of hydrocarbons[J]. Journal of Physics D: Applied Physics, 2008, 41(3):032002. doi: 10.1088/0022-3727/41/3/032002
    [7]
    KOSAREV I N, PAKHOMOV A I, KINDYSHEVA S V, et al.Nanosecond discharge ignition of lean C2H2-containing mixture:AIAA-2013-1050[R]. Reston:AIAA, 2013.
    [8]
    KOSAREV I N, PAKHOMOV A I, KINDYSHEVA S V, et al.Nanosecond discharge ignition in acetylene-containing mixtures[J]. Plasma Source Science and Technology, 2013, 22(4):447-450.
    [9]
    KOSAREV I N, ALEKSANDROV N L, KINDYSHEVA S V, et al.Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma:C2H6-to C5H12-containing mixtures[J]. Combustion and Flame, 2009, 156(1):221-233. doi: 10.1016/j.combustflame.2008.07.013
    [10]
    KOSAREV I N, ALEKSANDROV N L, KINDYSHEVA S V, et al.Kinetic mechanism of plasma-assisted ignition of hydrocarbons[J]. Journal of Physics D:Applied Physics, 2008, 41(3):295-302. doi: 10.2514/6.2008-5068
    [11]
    BOUMEHDI M A, STEPANYAN S A, DESGROUX P, et al.Ignition of methane-and n-butane-containing mixtures at high pressures by pulsed nanosecond discharge[J]. Combustion and Flame, 2014, 162(4):1336-1349. http://linkinghub.elsevier.com/retrieve/pii/S0010218014003484
    [12]
    KIMURA I, AOKI H, KATO M.The use of a plasma jet for fame stabilization and promotion of combustion in supersonic air flows[J]. Combust and Flame, 1981, 42:297-305. doi: 10.1016/0010-2180(81)90164-4
    [13]
    JACOBSEN L S, CARTER C D, BAURLE R A, et al.Plasma-assisted ignition in scramjets[J]. Journal of Propulsion and Power, 2008, 24(4):641-654. doi: 10.2514/1.27358
    [14]
    MASUYA G, TAKITA K, TAKAHASHI K, et al.Effects of airstream mach number on H/N plasma igniter[J]. Journal of Propulsion and Power, 2002, 18(3):679-685. doi: 10.2514/2.5984
    [15]
    TAKITA K, ABE N, MASUYA G, et al.Ignition enhancement by addition of NO and NO2, from a N2/O2, plasma torch in a supersonic flow[J]. Proceedings of the Combustion Institute, 2007, 31(2):2489-2496. doi: 10.1016/j.proci.2006.07.108
    [16]
    杜洪亮, 何立明, 兰宇丹, 等.约化场强对氮-氧混合气放电等离子体演化特性的影响[J].物理学报, 2011, 60(11):115201. doi: 10.7498/aps.60.115201

    DU H L, HE L M, LAN Y D, et al.Influence of reduced electric field on the evolvement characteristics of plasma under conditions of N2/O2 discharge[J]. Acta Physica Sinica, 2011, 60(11):115201(in Chinese). doi: 10.7498/aps.60.115201
    [17]
    韦宝禧, 欧东, 闫明磊, 等.超燃燃烧室等离子体点火和火焰稳定性能[J].北京航空航天大学学报, 2012, 38(12):1572-1576. http://bhxb.buaa.edu.cn/CN/abstract/abstract12467.shtml

    WEI B X, OU D, YAN M L, et al.Ignition and flame holding ability of plasma torch igniter in a supersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12):1572-1576(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12467.shtml
    [18]
    张鹏, 洪延姬, 丁小雨, 等.等离子体对含硼两相流扩散燃烧特性的影响[J].物理学报, 2015, 64(20):205203. doi: 10.7498/aps.64.205203

    ZHANG P, HONG Y J, DING X Y, et al.Effect of plasma on boron-based two-phase flow diffusion combustion[J]. Acta Physica Sinica, 2015, 64(20):205203(in Chinese). doi: 10.7498/aps.64.205203
    [19]
    KIM K, SHIN K S.Shock tube and modeling study of the ignition of propane[J]. Bulletin-Korean Chemical Society, 2001, 22(3):303-307. https://www.researchgate.net/profile/Kilyoung_Kim/publication/220032623_Shock_Tube_and_Modeling_Study_of_the_Ignition_of_Propane/links/0fcfd505ca8957ee3c000000.pdf
    [20]
    VRIES J D, HALL J M, SIMMONS S L, et al.Ethane ignition and oxidation behind reflected shock waves[J]. Combustion and Flame, 2007, 150(1):137-150.
    [21]
    沈双晏, 金星, 张鹏.甲烷-空气混合气体放电等离子体增强点火机理分析[J].推进技术, 2015, 36(10):1509-1515. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201510009.htm

    SHEN S Y, JIN X, ZHANG P.Analysis on mechanism of plasma enhanced ignition of methane-air discharge[J]. Journal of Propulsion Technology, 2015, 36(10):1509-1515(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201510009.htm
    [22]
    DAVIDSON D F, HANSON R K.Interpreting shock tube ignition data[J]. International Journal of Chemical Kinetics, 2004, 36(9):510-523. doi: 10.1002/(ISSN)1097-4601
    [23]
    张百灵, 王宇天, 李益文, 等.低气压直流辉光放电数值模拟与实验研究[J].高电压技术, 2016, 42(3):724-730. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603005.htm

    ZHANG B L, WANG Y T, LI Y W, et al.Numerical simulation and experimental study for low-pressure direct-current glow discharge[J]. High Voltage Engineering, 2016, 42(3):724-730(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603005.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(770) PDF downloads(549) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return