WANG Tingting, CAI Zhihao, WANG Yingxunet al. Integrated vision/inertial navigation method of UAVs in indoor environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 176-186. doi: 10.13700/j.bh.1001-5965.2016.0965(in Chinese)
Citation: WANG Tingting, CAI Zhihao, WANG Yingxunet al. Integrated vision/inertial navigation method of UAVs in indoor environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 176-186. doi: 10.13700/j.bh.1001-5965.2016.0965(in Chinese)

Integrated vision/inertial navigation method of UAVs in indoor environment

doi: 10.13700/j.bh.1001-5965.2016.0965
Funds:

Aeronautical Science Foundation of China 20135851043

More Information
  • Corresponding author: CAI Zhihao, E-mail: czh@buaa.edu.cn
  • Received Date: 23 Dec 2016
  • Accepted Date: 06 Feb 2017
  • Publish Date: 20 Jan 2018
  • A new integrated navigation method based on inertial sensor, optical flow and visual odometry is proposed for self-navigation indoor in GPS-denied environment. An ORB optical flow based method is also proposed for estimating real-time three-axis velocity of the UAV. The algorithm improves the traditional pyramid Lucas-Kanade method using sparse optical flow based on feature points. The tracking of feature points is made more accurate by applying forward-backward tracking and random sampling consensus strategies. For position estimation, a visual odometry method with integrated vision/inertial navigation is adopted, which uses the artificial icon method, visual optical flow information and inertial navigation data. Finally, the velocity and position estimations from the proposed method are validated via actual flight test and via comparison with velocity measurement information from a PX4Flow module and a Guidance module and with locating information from movement capture system.

     

  • [1]
    SHEN S J.Autonomous navigation in complex indoor and outdoor environments with micro aerial vehicles[D].Philadelphia:University of Pennsylvania, 2014.
    [2]
    吴琦, 蔡志浩, 王英勋.用于无人机室内导航的光流与地标融合方法[J].控制理论与应用, 2015, 32(11):1511-1517.

    WU Q, CAI Z H, WANG Y X.Optical flow and landmark fusion method for UAV indoor navization[J].Control Theory & Applications, 2015, 32(11):1511-1517(in Chinese).
    [3]
    LI P, LAMBERT A.A monocular odometer for a quadrotor using a homogra-phy model and inertial cues[C]//IEEE Conference on Robotics and Biomimetics.Piscataway, NJ:IEEE Press, 2015:570-575.
    [4]
    叶长春. IARC第7代任务中定位与目标跟踪方法研究[D]. 杭州: 浙江大学, 2016.

    YE C C.Research on localization and object tracking for the IARC mission7[D].Hangzhou:Zhejiang University, 2016(in Chinese).
    [5]
    MUR-ARTAL R, MONTIEL J M M, TARDOS J D.ORB-SLAM:A versatile and accurate monocular SLAM system[J].IEEE Transactions on Robotics, 2015, 31(5):1147-1163. doi: 10.1109/TRO.2015.2463671
    [6]
    LEUTENEGGER S, FURGALE P, RABAUD V, et al.Keyframe-based visual-inertial SLAM using nonlinear optimization[C]//Robotics:Science and Systems, 2013:789-795.
    [7]
    CHAO H, GU Y, GROSS J, et al.A comparative study of optical flow and traditional sensors in UAV navigation[C]//American Control Conference(ACC).Piscataway, NJ:IEEE Press, 2013:3858-3863.
    [8]
    MAMMARELLA M, CAMPA G, FRAVOLINI M L, et al.Comparing optical flow algorithms using 6-dof motion of real-world rigid objects[J].IEEE Transactions on, Systems, Man, and Cybernetics, Part C:Applications and Reviews, 2012, 42(6):1752-1762. doi: 10.1109/TSMCC.2012.2218806
    [9]
    DJI Innovations.PHANTOM 4 user's manual V1.2[EB/OL].(2016-12-23)
    [10]
    Hover Camera 2016[EB/OL].(2016-12-23)
    [11]
    RUBLEE E, RABAUD V, KONOLIGE K, et al.ORB:An efficient alternative to SIFT or SURF[J].Proceedings, 2011, 58(11):2564-2571.
    [12]
    ROSTEN E, DRUMMOND T.Machine learning for high-speed corner detection[C]//European Conference on Computer Vision.Berlin:Springer-Verlag, 2006:430-443.
    [13]
    CALONDER M, LEPETIT V, STRECHA C, et al.BRIEF:Binary robust independent elementary features[C]//European Conference on Computer Vision.Berlin:Springer-Verlag, 2010:778-792.
    [14]
    LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2):91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [15]
    BAY H, TUYTELAARS T, GOOL L V.SURF:Speeded up robust features[J].Computer Vision & Image Understanding, 2006, 110(3):404-417.
    [16]
    CHUM O, MATAS J, KITTLER J.Locally optimized RANSAC[J].Lecture Notes in Computer Science, 2003, 2781:236-243. doi: 10.1007/b12010
    [17]
    HONEGGER D, MEIER L, TANSKANEN P, et al.An open source and open hardware embedded metric optical flow cmos camera for indoor and outdoor applications[C]//International Conference on Robotics and Automation.Piscataway, NJ:IEEE Press, 2013:1736-1741.
    [18]
    HARTLEY R I, ZISSERMAN A.Multi-view geometry in computer vision[M].Cambrige:Cambridge University Press, 2004:239-247.
  • Relative Articles

    [1]SUO X S,WANG Y,ZHU Z. Overall scheme optimization of BWB UAVs based on comprehensive evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):466-477 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0250.
    [2]SHI Chenfa, XIONG Zhi, JIANG Xu, LI Qijie, WANG Zhengchun. Cooperative Navigation for UAV Swarm Based on AHRS[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0343
    [3]CHEN Yong, ZHOU FangChun, DONG Ke. Dual discriminator fusion of infrared and visible light images for visual saliency enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0072
    [4]QIN M X,WANG Z,LI H L,et al. Obstacle avoidance control of UAV formation based on distributed model prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1969-1981 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0509.
    [5]ZUO L,ZHANG X L,LI Z Y,et al. UAV control law design method based on active-disturbance rejection control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1512-1522 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0488.
    [6]CAI Z H,CHEN W J,ZHAO J,et al. Object detection and obstacle avoidance based on dynamic vision sensor for UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):144-153 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0201.
    [7]WANG Er-shen, ZHANG Hong-xuan, XU Song, YU Teng-li, LEI Hong, JI Shan-bin. UAV detection algorithm based on attentional feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0682
    [8]GOU J Z,LIANG T J,TAO C G,et al. Formation control and aggregation method of UAV based on consensus theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1646-1654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0470.
    [9]WU Q S,GUO J,KANG Z L,et al. Maritime mission assignment of UAV clusters based on γ random search strategy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3872-3883 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0882.
    [10]ZHANG J H,ZHAO W,WANG Z C,et al. UAV pedestrian tracking algorithm based on detection and re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2538-2546 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0675.
    [11]HAN X,WANG Y X,CHENG X C,et al. A decentralized multi-sensor fusion estimator using finite memory buffers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):335-343 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0240.
    [12]ZHANG H,YU Y Z,QIU X T. ORB-SLAM2 algorithm based on improved key frame selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):45-52 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0173.
    [13]LIU Fang, YANG Yu-yan, WANG Xin. UAV tracking algorithm based on feature fusion and block attention[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0281
    [14]PAN D,ZHENG J H,GAO D. Fast 3D path planning of UAV based on 2D connected graph[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3419-3431 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0147.
    [15]SUN D,GAO D,ZHENG J H,et al. UAV reinforcement learning control algorithm with demonstrations[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1424-1433 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0466.
    [16]JIN G D,XUE Y L,TAN L N,et al. Aerial object tracking algorithm for UAVs based on dual-attention shuffling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):53-65 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0177.
    [17]WANG L N,LIU Z B,YUAN J B,et al. Adaptive fault diagnosis and estimation for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2395-2405 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0656.
    [18]LI C H,MA J,YANG Y J,et al. Adaptively robust multi-sensor fusion algorithm based on square-root cubature Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):220-228 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0201.
    [19]LU T T,DENG Z J,GU X,et al. An ellipse detection algorithm for spacecraft optical navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):853-868 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0363.
    [20]ZHANG Ruixin, LI Ning, ZHANG Xiaxia, ZHOU Huiyu. Low-altitude UAV detection method based on optimized CenterNet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2335-2344. doi: 10.13700/j.bh.1001-5965.2021.0108
  • Cited by

    Periodical cited type(26)

    1. 蔡志浩,陈文军,赵江,王英勋. 基于动态视觉传感器的无人机目标检测与避障. 北京航空航天大学学报. 2024(01): 144-153 . 本站查看
    2. 张利民,刘若阳,黄亦杰,莫晓璇,邱明浩. 四旋翼无人机自主飞行平台的设计. 中原工学院学报. 2024(03): 31-35 .
    3. 贺勇,高正涛,邓婷. 无人机光流跟踪检测新方法. 电光与控制. 2023(02): 75-81 .
    4. 王丰,李沅,李佳潞,侯琪,李皓. 基于改进时间差分的视觉/惯性组合导航研究. 计算机测量与控制. 2023(03): 268-274 .
    5. 石琦,李翔. 融合光流与MARG传感器的三维姿态测量研究. 电子器件. 2023(05): 1281-1285 .
    6. 张娣,杨硕. 弱纹理条件下无人机姿态参数估计. 计算机系统应用. 2022(01): 168-174 .
    7. 顾兆军,陈辉,王家亮,崔海彬. 基于速度/高度对比的四轴飞行器GPS欺骗检测算法. 西北工业大学学报. 2022(03): 670-678 .
    8. 季俊贇,孙宪坤,周韦. 多源融合定位算法在巡检无人机上的应用. 导航定位学报. 2022(04): 130-137 .
    9. 於小杰,贺勇,刘盛华. 一种用于无人机室内定位的改进ORB光流算法. 计算机工程与应用. 2021(04): 266-271 .
    10. 闫昌达,王霞,左一凡,李磊磊,陈家斌. 基于事件相机的可视化及降噪算法. 北京航空航天大学学报. 2021(02): 342-350 . 本站查看
    11. 於小杰,贺勇,刘盛华. 基于金字塔光流法的无人机室内定点悬停设计. 自动化技术与应用. 2021(02): 16-18+28 .
    12. 陈玺光,王尔申,任旭,舒皖森,吴黎艳,徐嵩,张树宁,马毓徽. 基于北斗导航的无人机系统设计. 电子器件. 2021(05): 1248-1253 .
    13. 李翔,石琦. 融合光流与惯性传感器的扩展卡尔曼姿态滤波. 电子测量技术. 2021(17): 88-92 .
    14. 李翔,张鹏,石琦,唐妍梅. 采用光流传感器的三维角速度测量. 国外电子测量技术. 2021(10): 1-5 .
    15. 景晓娟,曹以龙,景旭川. 基于WIFI指纹的无人机室内定位策略. 计算机工程与设计. 2021(12): 3569-3575 .
    16. 夏华佳,章红平,陈德忠,李团. 基于描述符辅助光流跟踪匹配的数据关联方法. 交通信息与安全. 2021(06): 153-161 .
    17. 晏于文,俞涛,刘冠华,鲁玺龙,李志刚,王明直. 无人机在几类案事件现场照录像中的应用. 刑事技术. 2020(03): 311-316 .
    18. 王瑞荣,陈瞳,李晓红. 面向弱光流环境的惯性/光流组合导航方法研究. 电光与控制. 2019(01): 97-103 .
    19. 姜晓明,刘强. 基于FPGA的低复杂度快速SIFT特征提取. 北京航空航天大学学报. 2019(04): 804-810 . 本站查看
    20. 索文凯,胡文刚,伍锡山,张彪. 基于光学视觉辅助无人机自主降落研究综述. 激光杂志. 2019(04): 9-13 .
    21. 张义桢,向婕,唐立军. 基于二维码图像识别的无人机定位方法研究. 计算机应用与软件. 2019(09): 117-121 .
    22. 何康辉,董朝阳,王青. 一种考虑GPS信号中断的导航滤波算法. 北京航空航天大学学报. 2019(09): 1874-1881 . 本站查看
    23. 李群生,赵剡,王进达. 一种适用于高动态强干扰环境的视觉辅助微机械捷联惯性导航系统/全球定位系统超紧组合导航系统. 兵工学报. 2019(11): 2241-2249 .
    24. 王健. 基于光电图像特征的自主测速方法研究. 现代导航. 2019(06): 432-435 .
    25. 林列书. 船载无人机惯性导航电子系统信息实时融合方法. 舰船科学技术. 2018(20): 52-54 .
    26. 沈宝国,王彩凤,梁佩佩,廖泽宇. 四旋翼飞行器室内自主导航研究现状. 现代制造技术与装备. 2018(12): 9-10+13 .

    Other cited types(63)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views(1713) PDF downloads(893) Cited by(89)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return