Volume 44 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
LI Jiguang, CHEN Xin, LI Yajuan, et al. Nonlinear robust control method for maneuver flight of flying wing UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 89-98. doi: 10.13700/j.bh.1001-5965.2017.0014(in Chinese)
Citation: LI Jiguang, CHEN Xin, LI Yajuan, et al. Nonlinear robust control method for maneuver flight of flying wing UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 89-98. doi: 10.13700/j.bh.1001-5965.2017.0014(in Chinese)

Nonlinear robust control method for maneuver flight of flying wing UAV

doi: 10.13700/j.bh.1001-5965.2017.0014
Funds:

Aeronautical Science Foundation of China 20160152001

the Fundamental Research Funds for the Central Universities NS2015038

More Information
  • Corresponding author: CHEN Xin, E-mail: chenxin@nuaa.edu.cn
  • Received Date: 12 Jan 2017
  • Accepted Date: 13 Apr 2017
  • Publish Date: 20 Jan 2018
  • As flying wing UAV lacks manipulating ability, a control strategy combined with fluidic thrust vectoring-turbocharged engine (FTV-E) technology is proposed. In this paper, the control scheme is designed:the inner loop compensator is used to eliminate the negative coupling term of system; the outer loop compensator used backstepping tracking algorithm; the particle swarm optimization (PSO) compensator to compensate the disturbance and coupling term that cannot be modeled. The control structure's stability is proved. Based on the traditional backstepping control methods, the proposed controller increases the inner loop compensator. The proposed inner loop compensator retains the aerodynamic damping term which is favorable to flight. This compensator not only can reduce the conservatism of the outer loop controller, but also is convenient for engineering realization. The simulation results show that the proposed control scheme is effective.

     

  • loading
  • [1]
    LAN C E, LI J L, YAU W C, et al. Longitudinal and lateral-directional coupling effects on nonlinear unsteady aerodynamic modeling from flight data[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2013: 394-402.
    [2]
    ALIKHAN M, PEYADA N K, GO T H.Flight dynamics and optimization of three-dimensional perching maneuver[J].Journal of Guidance, Control, and Dynamics, 2013, 36(6):1791-1797. doi: 10.2514/1.58894
    [3]
    GUO Y, YAO Y, WANG S, et al.Maneuver control strategies to maximize prediction errors in ballistic middle phase[J].Journal of Guidance, Control, and Dynamics, 2013, 36(4):1225-1234. doi: 10.2514/1.56818
    [4]
    ZHI Q, CAI Y L.Energy-management steering maneuver for thrust vector-controlled interceptors[J].Journal of Guidance, Control, and Dynamics, 2012, 35(6):1798-1804. doi: 10.2514/1.56611
    [5]
    MUELLER J B, GRIESEMER P R, THOMAS S J.Avoidance maneuver planning incorporating station-keeping constraints and automatic relaxation[J].Journal of Aerospace Computing Information & Communication, 2013, 10(6):306-322. https://experts.umn.edu/en/publications/avoidance-maneuver-planning-incorporating-station-keeping-constra
    [6]
    NEELY A J, GESTO F N, Young J. Performance studies of shock vector control fluidic thrust vectoring[C]//Proceedings of 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2007: 1-14.
    [7]
    KAREN A D. Summary of fluidic thrust vectoring research conducted at NASA langley research center: AIAA-2003-3800[R]. Reston: AIAA, 2003.
    [8]
    SADIQ M U. Performance analysis and flowfield characterization of secondary injection thrust vector control (SITVC) for a 2DCD nozzle[D]. Los Angeles: University of Southern California, 2007: 85-108.
    [9]
    王猛杰, 额日其太, 王强.激波矢量控制喷管落压比影响矢量性能及分离区控制数值模拟[J].航空动力学学报, 2015, 30(3):527-538. doi: 10.13224/j.cnki.jasp.2015.03.002.html

    WANG M J, ERIQITAI, WANG Q.Numerical simulaton of nozzle pressure ratio effect on vector performance and separation control for shock vector control nozzle[J].Journal of Aerospace Power, 2015, 30(3):527-538(in Chinese). doi: 10.13224/j.cnki.jasp.2015.03.002.html
    [10]
    KIRANYAZ S, INCE T, GABBOUJ M.Dynamic data clustering using stochastic approximation driven multi-dimensional particle swarm optimization[J].Lecture Notes in Computer Science, 2010, 22(10):1448-1462. https://www.researchgate.net/publication/220867612_Dynamic_Data_Clustering_Using_Stochastic_Approximation_Driven_Multi-Dimensional_Particle_Swarm_Optimization
    [11]
    YANG Y, CHEN X, LI C.Transient performance improvement in model reference adaptive control using H optimal method[J].Journal of the Franklin Institute, 2015, 352(1):16-32. doi: 10.1016/j.jfranklin.2014.09.014
    [12]
    杨艺, 陈欣, 李春涛.一种可保证瞬态特性的改进鲁棒模型参考自适应控制[J].控制与决策, 2015, 30(8):1379-1385. http://mall.cnki.net/magazine/Article/KZYC201508008.htm

    YANG Y, CHEN X, LI C T.A modified robust model reference adaptive controller with guaranteed transient performance[J].Control and Decision, 2015, 30(8):1379-1385(in Chinese). http://mall.cnki.net/magazine/Article/KZYC201508008.htm
    [13]
    朱纪洪, 张尚敏, 周池军, 等.飞机超机动状态动力学特征及对控制系统的挑战[J].控制理论与应用, 2014, 31(12):1650-1662. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201412011

    ZHU J H, ZHANG S M, ZHOU C J, et al.Dynamic characteristics and challenges for control system of super-maneuverable aircraft[J].Control Theory & Applications, 2014, 31(12):1650-1662(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201412011
    [14]
    WILSON J R.UAV worldwide roundup 2007[J].Aerospace America, 2007, 45(5):30-37. https://www.researchgate.net/.../293001919_UAV_worldwide_roundup_2009
    [15]
    OSTERHUBER R. FCS requirements for combat aircraft-lessons learned for future designs[C]//Workshop on Stability & Control, 2011: STO-AVT-189.
    [16]
    LI J, CHEN X, LI Z. The attitude decoupling control of the flying wing UAV[C]//Proceedings of IEEE Guidance, Navigation and Control Conference. Piscataway, NJ: IEEE Press, 2017: 357-362.
    [17]
    BANKS A, VINCENT J, ANYAKOHA C.A review of particle swarm optimization.Part Ⅱ:Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications[J].Natural Computing, 2008, 7(1):109-124. doi: 10.1007/s11047-007-9050-z
    [18]
    范成礼, 邢清华, 范海雄, 等.带审敛因子的变邻域粒子群算法[J].控制与决策, 2014, 29(4):696-701. http://www.oalib.com/paper/1694662

    FAN C L, XING Q H, FAN H X, et al.Particle swarm optimization and variable neighborhood search algorithm with convergence criterions[J].Control and Decision.2014, 29(4):696-701(in Chinese). http://www.oalib.com/paper/1694662
    [19]
    贾树晋, 杜斌, 岳恒.基于局部搜索与混合多样性策略的多目标粒子群算法[J].控制与决策, 2012, 27(6):813-819.

    JIA S J, DU B, YUE H.Local search and hybrid diversity strategy based multi-objective particle swarm optimization algorithm[J].Control and Decision, 2012, 27(6);813-819(in Chinese).
    [20]
    李擎, 张超, 陈鹏, 等.一种基于粒子群参数优化的改进蚁群算法[J].控制与决策, 2013, 28(6):873-879. http://www.doc88.com/p-2731097610225.html

    LI Q, ZHANG C, CHEN P, et al.Improved ant colony optimization algorithm based on particle swarm optimization[J].Control and Decision, 2013, 28(6):873-879(in Chinese). http://www.doc88.com/p-2731097610225.html
    [21]
    POLI R, KENNEDY J, BLACKWELL T.Particle swarm optimization:An overview[J].Swarm Intelligence, 2007, 1:33-57. doi: 10.1007/s11721-007-0002-0
    [22]
    SOEST W R V, CHU Q P, MULDER J A.Combined feedback linearization and constrained model predictive control for entry flight[J].Journal of Guidance, Control, and Dynamics, 2006, 29(2):427-434. doi: 10.2514/1.14511
    [23]
    SONNEVELDT L, CHU Q P, MULDER J A.Nonlinear flight control design using constrained adaptive backstepping[J].Journal of Guidance, Control, and Dynamics, 2007, 30(2):322-336. doi: 10.2514/1.25834
    [24]
    LEE T, KIM Y.Nonlinear adaptive flight control using backstepping and neural networks controller[J].Journal of Guidance, Control, and Dynamics, 2001, 24(4):675-682. doi: 10.2514/2.4794
    [25]
    SIEBERLING S, CHU Q P, MULDER J A.Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction[J].Journal of Guidance, Control, and Dynamics, 2010, 33(6):1732-1742. doi: 10.2514/1.49978
    [26]
    MACKUNIS W, PATRE P M, KAISER M K, et al.Asymptotic tracking for aircraft via robust and adaptive dynamic inversion methods[J].IEEE Transactions on Control Systems Technology, 2010, 18(6):1448-1456. doi: 10.1109/TCST.2009.2039572
    [27]
    JOHNSON E N, TURBE M A.Modeling, control, and flight testing of a small-ducted fan aircraft[J].Journal of Guidance, Control, and Dynamics, 2006, 29(4):769-779. doi: 10.2514/1.16380
    [28]
    XU B, HUANG X, WANG D, et al.Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J].Asian Journal of Control, 2014, 16(1):162-174. doi: 10.1002/asjc.2014.16.issue-1
    [29]
    李继广, 陈欣, 王鑫, 等.飞翼无人机机动飞行非线性鲁棒自适应控制[J].系统工程与电子技术, 2017, 39(9):2058-2067. doi: 10.3969/j.issn.1001-506X.2017.09.20

    LI J G, CHEN X, WANG X, et al.Nonlinear robust adaptive control of flying wing UAV maneuvering flight[J].Systems Engineering and Electronics, 2017, 39(9):2058-2067(in Chinese). doi: 10.3969/j.issn.1001-506X.2017.09.20
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(1004) PDF downloads(376) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return