Citation: | WANG Feng, YANG Dongkai. Sea surface salinity determination method assisted by spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 108-116. doi: 10.13700/j.bh.1001-5965.2017.0018(in Chinese) |
Global navigation satellite system-reflectometry (GNSS-R) is a new remote sensing way which is passive radar and could be used to improve the retrieval precision of the sea surface salinity (SSS). The model of brightness temperature and the scattering power model of GNSS-R were reviewed, and the spaceborne simulation scenario was developed in this paper. Based on those, the performance of GNSS-R aiding radiometer to determine SSS was first explored. Although it is possible to decrease the mass and power consumption of spaceborne equipment by sharing the antenna and radio frequency font-end between GNSS-R and radiometer working on the frequency of GPS L1 1 575.42 MHz, when SSS is larger than 25 psu, the sensitivity of brightness temperature to SSS reduces by about 0.1 and 0.08K/psu for the vertical and horizontal polarization signal respectively. The distortion of reflected GPS L1 signals on the measurement of the brightness temperature was analyzed. It is found that under the condition of the simulation scenario for 1 K variation of brightness temperature, reflected GPS L1 signals introduce error less than 2.5×10-4 K. Subsequently, the sensitivity of the GNSS-R observable to the brightness temperature variation for the vertical and horizontal polarization signal was explored. The results show that when incidence angle increases, the sensitivity of the horizontal and vertical polarization signal show falling and rising tendency respectively. Finally, the relationship between the sensiti-vity of the observable to the brightness temperature variation and the spatial resolution was analyzed. The conclusion is that the study of retrieval algorithm having high accuracy and spatial resolution is crucial for spaceborne GNSS-R aiding radiometer to determine SSS.
[1] |
刘良明.卫星海洋遥感导航[M].武汉:武汉大学出版社, 2010:265-266.
LIU L M.An introduction to satellite oceanic remote sensing[M].Wuhan:Wuhan University Press, 2010:265-266(in Chinese).
|
[2] |
FONT J, LAGERLOEF G S E, VINE D M L, et al.The determination of surface salinity with the European SMOS space mission[J].IEEE Transactions on Geoscience & Remote Sensing, 2004, 42(10):2196-2205. https://www.researchgate.net/publication/4063971_The_determination_of_surface_salinity_with_SMOS_-_recent_results_and_main_issues
|
[3] |
VINE D M L, LAGERLOEF G S E, COLOMB F R, et al.Aquarius:An instrument to monitor sea surface salinity from space[J].IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(7):2040-2050. https://aquarius.nasa.gov/pdfs/Aquarius_LeVine_et_al_2007.pdf
|
[4] |
LAGERLOEF G S E, SWIFT C T, LEVINE D M.Sea surface salinity:The next remote sensing challenge[J].Oceanography, 1995, 8(2):40-50. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970001845.pdf
|
[5] |
VALLLLOSSERA M.Determination of sea surface salinity and wind speed by L-band microwave radiometry from a fixed platform[J].International Journal of Remote Sensing, 2004, 25(1):111-128. doi: 10.1080/0143116031000115175
|
[6] |
MARCHAN-HERNANDEZ J F, VALENCIA E, RODRIGUEZ-ALVAREZ N, et al.Sea-state determination using GNSS-R data[J].IEEE Geoscience & Remote Sensing Letters, 2010, 7(4):621-625. http://www.academia.edu/4472509/Sea-State_Determination_Using_GNSS-R_Data
|
[7] |
FABRA F, CARDELLACH E, RIUS A, et al.Phase altimetry with dual polarization GNSS-R over sea ice[J].IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(6):2112-2121. https://www.researchgate.net/profile/Estel_Cardellach/publication/224266079_Phase_altimetry_with_dual_polarization_GNSS-R_over_sea_ice/links/00b7d537dce3aac591000000.pdf
|
[8] |
RODRIGUEZALVAREZ N, BOSCHLLUIS X, CAMPS A, et al.Soil moisture retrieval using GNSS-R techniques:Experimental results over a bare soil field[J].IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(11):3616-3624. http://ieeexplore.ieee.org/document/5282600/
|
[9] |
SOLAT F. Sea surface remote sensing with GNSS and sunlight reflections[D]. Catalunya: Universitat Politécnica de Catalunya, 2003: 149-164.
|
[10] |
佟晓林. 提高卫星微波遥感海面盐度反演精度的方法研究[D]. 武汉: 华中科技大学, 2015: 121-127. http://cdmd.cnki.com.cn/Article/CDMD-10487-1015596946.htm
TONG X L. Research on improving accuracy methods of ocean surface salinity in satellite microwave remote sensing[D]. Wuhan: Huazhong University of Science and Technology, 2015: 121-127(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10487-1015596946.htm
|
[11] |
XAVIER B L, ADRIANO C, ISAAC R P, et al.PAU/RAD:Design and preliminary calibration results of a new L-band pseudo-correlation radiometer concept[J].Sensors, 2008, 8(7):4392. http://www.mdpi.com/1424-8220/8/7/4392/xml
|
[12] |
KLEIN L, SWIFT C.An improved model for the dielectric constant of sea water at microwave frequencies[J].IEEE Transactions on Antennas & Propagation, 2003, 25(1):104-111. https://aquarius.umaine.edu/docs/ed_klien_swift_1978.pdf
|
[13] |
CAMPS A, FONT J, VALL-LLOSSERA M, et al.The WISE 2000 and 2001 field experiments in support of the SMOS mission:Sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval[J].IEEE Transactions on Geoscience & Remote Sensing, 2004, 42(4):804-823. http://ieeexplore.ieee.org/document/1288375/
|
[14] |
EL-NIMRI S F. Development of an improved microwave ocean surface emissivity radiative transfer model[D]. Orlando: University of Centeral Florida, 2010: 64-65. https://www.researchgate.net/publication/47714053_DEVELOPMENT_OF_AN_IMPROVED_MICROWAVE_OCEAN_SURFACE_EMISSIVITY_RADIATIVE_TRANSFER_MODEL
|
[15] |
HEJAZIN Y, JONES W L, SANTOS-GARCIA A, et al.A roughness correction for aquarius sea surface salinity using the CONAE microwave radiometer[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 8(12):5500-5510. https://www.researchgate.net/profile/W_Jones/publication/283545603_A_Roughness_Correction_for_Aquarius_Sea_Surface_Salinity_using_the_CONAE_MicroWave_Radiometer/links/5707e07b08aed09e916d1e65.pdf?origin=publication_detail
|
[16] |
ZAVOROTNY V U, VORONOVICH A G.Scattering of GPS signals from the ocean with wind remote sensing application[J].IEEE Transactions on Geoscience & Remote Sensing, 2002, 38(2):951-964. https://www.esrl.noaa.gov/psd/psd3/multi/remote/pdf/TGARS_2000b.pdf
|
[17] |
ELFOUHAILY T, CHAPRON B, KATSAROS K, et al.A unified directional spectrum for long and short wind-driven waves[J].Journal of Geophysical Research:Oceans, 1997, 102(C7):15781-15796. doi: 10.1029/97JC00467
|
[18] |
CLARIZIA M P, RUF C S.On the spatial resolution of GNSS reflectometry[J].IEEE Geoscience & Remote Sensing Letters, 2016, 13(8):1064-1068. http://adsabs.harvard.edu/abs/2016IGRSL..13.1064C
|
[19] |
谢刚.GPS原理与接收机设计[M].北京:电子工业出版社, 2015:242-244.
XIE G.Principles of GPS and receiver design[M].Beijing:Publishing House of Electronics Industry, 2015:242-244(in Chinese).
|