Citation: | HAN Tao, LAN Yuqing, XIAO Limin, et al. Incremental and parallel algorithm for anomaly detection in dynamic graphs[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 117-124. doi: 10.13700/j.bh.1001-5965.2017.0019(in Chinese) |
Financial fraud behavior, network intrusion and suspicious social actions can be detected by structural anomaly detection in graphs. The existing anomaly detection algorithms require high computational complexity and cannot process large-scale dynamic graphs. So an incremental and parallel algorithm is proposed to discover and detect abnormal patterns in dynamic graphs effectively and efficiently. The whole graph was partitioned into subgraphs by time sliding windows.
[1] |
AHMED N K, NEVILLE J, KOMPELLA R.Network sampling:From static to streaming graphs[J].ACM Transactions on Knowledge Discovery from Data(TKDD), 2014, 8(2):7:1-7:56. https://www.researchgate.net/profile/Nesreen_Ahmed3/publication/233409333_Network_Sampling_From_Static_to_Streaming_Graphs/links/5772cb1d08ae2b93e1a7cd80.pdf
|
[2] |
EBERLE W, HOLDER L.Anomaly detection in data represented as graphs[J].Intelligent Data Analysis, 2007, 11(6):663-689. https://content.iospress.com/articles/intelligent-data-analysis/ida00309
|
[3] |
EBERLE W, HOLDER L, GRAVES J.Insider threat detection using a graph-based approach[J].Journal of Applied Security Research, 2011, 6(1):32-81. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.720.715
|
[4] |
NOBLE C C, COOK D J. Graph-based anomaly detection[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2003: 631-636.
|
[5] |
AKOGLU L, MCGLHON M, FALOUSTSOS C. OddBall: Spotting anomalies in weighted graphs[C]//Proceedings of the 14th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining. Berlin: Springer-Verlag, 2010, 3: 410-421.
|
[6] |
FEIGENBAUM J, KANNAN S, MCGREGOR A, et al.On graph problems in a semi-streaming model[J].Theoretical Computer Science, 2005, 348(2-3):207-216. doi: 10.1016/j.tcs.2005.09.013
|
[7] |
DEMETRESCU C, FINOCCHI I, RIBICHINI A.Trading off space for passes in graph streaming problems[J].ACM Transactions on Algorithms(TALG), 2009, 6(1):6:1-6:17. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.527.8557
|
[8] |
AGGARWAL G, DATAR M, RAJAGOPALAN S, et al. On the streaming model augmented with a sorting primitive[C]//Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science(FOCS). Washington, D. C. : IEEE Computer Society, 2004: 540-549.
|
[9] |
SARMA A, GOLLAPUDI S, PANIGRAHY R. Estimating PageRank on graph streams[C]//Proceedings of the 27th ACM Sigmod-Sigact-Sigart Symposium on Principles of Database Systems. New York: ACM Press, 2008: 69-78.
|
[10] |
SHIN K, ELIASSI-RAD T, FALOUTSOS C. CoreScope: Graph mining using k-core analysis-Patterns, anomalies and algorithms[C]//2016 IEEE 16th International Conference on Data Mining (ICDM). Washington, D. C. : IEEE Computer Society, 2017: 469-478.
|
[11] |
BRIDGES R A, COLLINS J P, FERRAGUT E M, et al. Multi-level anomaly detection on time-varying graph data[C]//2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). New York: ACM Press, 2016: 579-583.
|
[12] |
EBERLE W, HOLDER L. A partitioning approach to scaling anomaly detection in graph streams[C]//2014 IEEE International Conference on Big Data. Washington, D. C. : IEEE Computer Society, 2014: 17-24.
|
[13] |
AKOGLU L, TONG H, KOUTRA D.Graph based anomaly detection and description:A survey[J].Data Mining and Knowledge Discovery, 2015, 29(3):626-688. doi: 10.1007/s10618-014-0365-y
|
[14] |
吴烨, 钟志农, 熊伟, 等.一种高效的属性图聚类算法[J].计算机学报, 2013, 36(8):1704-1713. http://www.cqvip.com/QK/90818X/201308/46956448.html
WU Y, ZHONG Z N, XIONG W, et al.An efficient method for attributed graph clustering[J].Chinese Journal of Computers, 2013, 36(8):1704-1713(in Chinese). http://www.cqvip.com/QK/90818X/201308/46956448.html
|
[15] |
EBERLE W, HOLDER L. Incremental anomaly detection in graphs[C]//2013 IEEE 13th International Conference on Data Mining Workshops. Washington, D. C. : IEEE Computer Society, 2013: 521-528.
|
[16] |
EPASTO A, LATTANZI S, SOZIO M. Efficient densest subgraph computation in evolving graphs[C]//Proceedings of the 24th International Conference on World Wide Web. Geneva: International World Wide Web Conferences Steering Committee, 2015: 300-310.
|
[17] |
YANG J, LESKOVEC J. Defining and evaluating network communities based on ground-truth[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. New York: ACM Press, 2012, 3: 1-3: 8.
|