Volume 44 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
MENG Weiying, XIE Liyang, HU Jiexin, et al. Strain measurement and stress prediction methods of metal layer in fiber metal laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 142-150. doi: 10.13700/j.bh.1001-5965.2017.0035(in Chinese)
Citation: MENG Weiying, XIE Liyang, HU Jiexin, et al. Strain measurement and stress prediction methods of metal layer in fiber metal laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 142-150. doi: 10.13700/j.bh.1001-5965.2017.0035(in Chinese)

Strain measurement and stress prediction methods of metal layer in fiber metal laminates

doi: 10.13700/j.bh.1001-5965.2017.0035
Funds:

National Natural Science Foundation of China 51335003

Subsidized by the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning 

More Information
  • Corresponding author: XIE Liyang, E-mail: lyxie@me.neu.edu.cn
  • Received Date: 18 Jan 2017
  • Accepted Date: 17 Mar 2017
  • Publish Date: 20 Jan 2018
  • Fiber metal laminates, as a new-type composite material, have been applied in aerospace field. Digital optical strain method is used to realize strain measurement of metal layer instead of traditional method of strain measurement. Meanwhile, in order to predict the stress distribution in metal layer accurately, the global stiffness matrix obtained from classic laminate theory is modified by the equivalent stiffness matrix from sub-laminate stiffness theory. Taking 2/1 and 3/2 laminates of glass fiber reinforced Al-Li alloy as an example, the stress distribution in metal layer of the laminates is determined based on the measured strain, finite element analysis, classical laminate theory and modified method. The comparison of stress distributions obtained from the measured strain and finite element analysis shows that the maximum errors are only 2.12% and 3.68% for 2/1 and 3/2 laminates, respectively, which verifies the accuracy and practicability of the optical strain method. By comparing the stress distributions from the optical strain method and laminate theory, the prediction accuracy of the modified model increases by 2.91% and 5.83% compared with that of original model for 2/1 and 3/2 laminates, respectively, which proves the effectiveness and advancement of the modified model.

     

  • loading
  • [1]
    HOMAN J J.Fatigue initiation in fiber metal laminates[J].International Journal of Fatigue, 2006, 28(4):366-374. doi: 10.1016/j.ijfatigue.2005.07.030
    [2]
    郭亚军, 吴学仁.纤维金属层板疲劳裂纹扩展速率与寿命预测的唯象模型[J].航空学报, 1998, 19(3):275-282. https://www.hanspub.org/journal/PaperInformation.aspx?paperID=15123

    GUO Y J, WU X R.Phenomenological model for predicting fatigue crack growth in fiber reinforced metal laminates[J].Acta Aeronautica et Astronautica Sinica, 1998, 19(3):275-282(in Chinese). https://www.hanspub.org/journal/PaperInformation.aspx?paperID=15123
    [3]
    CHANG P Y, YEH P C, YANG J M.Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates[J].Materials Science and Engineering A, 2008, 496:273-280. doi: 10.1016/j.msea.2008.07.041
    [4]
    FRIZZELL R M, MCCRATHY C T, MCCARTHY M A.An experimental investigation into the progression of damage in pin-loaded fiber metal laminates[J].Composites Part B:Engineering, 2008, 39(6):907-925. doi: 10.1016/j.compositesb.2008.01.007
    [5]
    MARISSEN R.Fatigue crack growth in ARALL:A hybrid aluminum-aramid composite material crack growth mechanisms and quantitative predictions of the crack growth rates[D].Delft:Delft University of Technology, 1988.
    [6]
    ALDERLIESTEN R C.Development of an empirical fatigue crack growth prediction model for the fibre metal laminate glare[D].Delft:Delft University of Technology, 1999.
    [7]
    郭亚军. 纤维金属层板的疲劳损伤与寿命预测[D]. 北京: 北京航空材料研究院, 1997.

    GUO Y J. Fatigue damage and life prediction of fiber reinforced metal laminates[D].Beijing:Beijing Institute of Aeronautical Materials, 1997(in Chinese).
    [8]
    KIEBOOM O.Fatigue crack initiation and early crack growth in glare at different temperatures[D]. Delft:Delft University of Technology, 2000.
    [9]
    MURPHY K, DUKE J.A rugged optical fiber interferometer for strain measurements inside a composite material laminate[J].Journal of Composites, Technology and Research, 1988, 10(1):11-15. doi: 10.1520/CTR10269J
    [10]
    马子广, 陈庆童, 王卫卫.复合材料层压板开孔拉伸力学性能探究[J].直升机技术, 2015(1):64-69. doi: 10.3969/j.issn.1000-2278.2014.02.007

    MA Z G, CHEN Q T, WANG W W.The exploring of composite materials' mechanical properties under tensile loading[J].Helicopter Technique, 2015(1):64-69(in Chinese). doi: 10.3969/j.issn.1000-2278.2014.02.007
    [11]
    屈蓓, 付小龙, 何俊武, 等.非接触式光学应变测量技术研究进展[J].计测技术, 2013, 33(5):10-15. http://www.doc88.com/p-5428069842068.html

    QU B, FU X L, HE J W, et al.Research on optical non-contact strain measurement[J].Metrology & Measurement Technology, 2013, 33(5):10-15(in Chinese). http://www.doc88.com/p-5428069842068.html
    [12]
    耿红霞, 付朝华, 蒋小林, 等.光学应变测量系统在研究生实验教学中的应用[J].实验室研究与探索, 2015, 34(3):220-224. https://www.wenkuxiazai.com/doc/74ae6dcb28ea81c758f5784c.html

    GENG H X, FU C H, JIANG X L, et al.Application of optical strain measurement system in experiment teaching for postgraduates[J].Re-search and Exploration in Laboratory, 2015, 34(3):220-224(in Chinese). https://www.wenkuxiazai.com/doc/74ae6dcb28ea81c758f5784c.html
    [13]
    闻柏承, 顾震隆.带或不带脱层的复合材料层板强度的预报[J].复合材料学报, 1989, 2(1):48-54.

    WEN B C, GU Z L.Probabilistic prediction of laminates with or without delamination[J].Acta Materiae Compositae Sinica, 1989, 2(1):48-54(in Chinese).
    [14]
    甄文强, 王波, 李潘, 等.平面编织C/SiC复合材料层合板偏轴拉伸性能研究[J].机械强度, 2014, 36(1):856-861. http://manu24.magtech.com.cn/fhcl/CN/abstract/abstract13085.shtml

    ZHEN W Q, WANG B, LI P, et al.Study of off-axis tensile properties of plain-woven C/SiC composites[J].Journal of Mechanical Strength, 2014, 36(1):856-861(in Chinese). http://manu24.magtech.com.cn/fhcl/CN/abstract/abstract13085.shtml
    [15]
    SPRONK S W F, SEN I, ALEDRLIESTEN R C.Predicting fatigue crack initiation in fibre metal laminates based on metal fatigue test data[J].International Journal of Fatigue, 2015, 70:428-439. doi: 10.1016/j.ijfatigue.2014.07.004
    [16]
    SUN C T, LI S J.Three dimensional effective elastic constants for thick laminates[J].Composite Material, 1988, 22(7):629-639. doi: 10.1177/002199838802200703
    [17]
    BRUNBAUER J, PINTER G.Fatigue life prediction of carbon fibre reinforced laminates by using cycle-dependent classical laminate theory[J].Composites Part B:Engineering, 2015, 70:167-174. doi: 10.1016/j.compositesb.2014.11.015
    [18]
    张振瀛.复合材料力学基础[M].北京:航空工业出版社, 1989:10.

    ZHANG Z Y.Mechanical basis of composite[M].Beijing:Aviation Industry Press, 1989:10(in Chinese).
    [19]
    赵美英, 陶梅贞.复合材料结构力与结构设计[M].西安:西北工业大学出版社, 2007:12.

    ZHAO M Y, TAO M Z.Structural mechanics and structural design of composite[M].Xi'an:Northwestern Polytechnical University Press, 2007:12(in Chinese).
    [20]
    孟维迎. 大型风机叶片复合纤维性能等效算法研究及应用[D]. 呼和浩特: 内蒙古工业大学, 2013.

    MENG W Y.Research and application of performance equivalence agorithm of composite for large scale wind turbine blade[D].Huhhot:Inner Mongolia University of Technology, 2013(in Chinese).
    [21]
    孙鹏文, 岳彩宾, 张兰挺, 等.基于子层刚度法性能等效的风机叶片分析研究[J].太阳能学报, 2013, 34(11):1974-1977. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201427034.htm

    SUN P W, YUE C B, ZHANG L T, et al.Research on wind turbine blade analysis of composite equivalent elastic constants based on sub-laminate stiffness method[J].Acta Energiae Solaris Sinica, 2013, 34(11):1974-1977(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201427034.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(780) PDF downloads(299) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return