Citation: | LEI Peng, RAN Zhiqiang, WANG Jun, et al. Parabolic equation based land clutter power map modeling for low-altitude surveillance radar in urban areas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 63-70. doi: 10.13700/j.bh.1001-5965.2017.0037(in Chinese) |
Land clutter power exerts a strong impact on the performance of low-altitude surveillance radar. Especially in urban areas, skyscrapers and atmosphere conditions complicate the radar signal propagation and the electromagnetic scattering from land surfaces. This paper presents a land clutter power map modeling approach for low-altitude surveillance radar in urban areas by using the parabolic equations (PE). It could theoretically contribute to the performance prediction and field deployment of such radar systems as well as the analysis of urban clutter characteristics. The proposed approach exploits wide-angle PE to take into account the reflection, diffraction, refraction and multipath effects in low-grazing-angle radar propagation related to tall buildings and atmosphere conditions. After the 3D approximation of aforementioned 2D wide-angle PE, the propagation factors could be obtained in the 3D environment. Then according to the radar equation, the power in every clutter cell is calculated. Finally, numerical simulations are carried out to demonstrate the influence of different architectural appearances and urban skyscrapers on radar signal propagation and land clutter powers.
[1] |
陈唯实, 宁焕生.利用一次雷达实现低空空域的安全监视[J].北京航空航天大学学报, 2012, 38(2):143-148. http://bhxb.buaa.edu.cn/CN/abstract/abstract12191.shtml
CHEN W S, NING H S.Security surveillance of low-altitude airspace with primary radar[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(2):143-148(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12191.shtml
|
[2] |
TAKAHASHI R, HIRATA K, MANIWA H. Altitude estimation of low elevation target over the sea for surface based phased array radar[C]//Proceedings of IEEE Radar Conference. Piscataway, NJ: IEEE Press, 2010: 123-128.
|
[3] |
ZHENG Y S, CHEN B X.Altitude measurement of low-angle target in complex terrain for very high-frequency radar[J].IET Radar Sonar Navigation, 2015, 9(8):967-973. doi: 10.1049/iet-rsn.2014.0544
|
[4] |
MAN M Y, LEI Z Y, XIE Y J, et al.Monte Carlo simulation of the echo signals from low-flying targets for airborne radar[J].International Journal of Antennas & Propagation, 2014:416985. doi: 10.1155/2014/416985
|
[5] |
GREENBERG E, NAOR M. Direction of arrival estimation in urban multipath environments[C]//Proceedings of European Conference on Antennas and Propagation. Piscataway, NJ: IEEE Press, 2016: 1-5.
|
[6] |
ANDERSON K D.Radar detection of low-altitude targets in a maritime environment[J].IEEE Transactions on Antennas and Propagation, 1995, 43(6):609-613. doi: 10.1109/8.387177
|
[7] |
SIRKOVA I.Brief review on PE method application to propagation channel modeling in sea environment[J].Central European Journal of Engineering, 2012, 2(1):19-38. doi: 10.2478/s13531-011-0049-y
|
[8] |
ZHAGN P, BAI L, WU Z, et al.Applying the parabolic equation to tropospheric groundwave propagation:A review of recent achievements and significant milestones[J].IEEE Antennas & Propagation Magazine, 2016, 58(3):31-44. http://adsabs.harvard.edu/abs/2016IAPM...58...31Z
|
[9] |
DONOHUE D J, KUTLER J R.Modeling radar propagation over terrain[J].Johns Hopkins APL Technical Digest, 1997, 18(2):279-287. https://core.ac.uk/display/22829292
|
[10] |
胡绘斌. 预测复杂环境下电波传播特性的算法研究[D]. 长沙: 国防科学技术大学, 2006: 4-8. http://cdmd.cnki.com.cn/Article/CDMD-90002-2007141048.htm
HU H B. Study on the algorithms of predicting the radio propagation characteristics in complex environments[D]. Changsha: National University of Defense Technology, 2006: 4-8(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90002-2007141048.htm
|
[11] |
THOMSON D J, CHAPMAN N R.A wide-angle split-step algorithm for the parabolic equation[J].Journal of the Acoustical Society of America, 1983, 74(6):1848-1854. doi: 10.1121/1.390272
|
[12] |
BARRIOS A E.A terrain parabolic equation model for propagation in the troposphere[J].IEEE Transactions on Antennas and Propagation, 1994, 42(1):90-98. doi: 10.1109/8.272306
|
[13] |
LI L, LIN L K, WU Z S, et al.Study on the maximum calculation height and the maximum propagation angle of the troposcatter wide-angle parabolic equation method[J].IET Microwaves Antennas & Propagation, 2016, 10(6):686-691. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7459748
|
[14] |
KUTTLER J R, JANASWAMY R.Improved Fourier transform methods for solving the parabolic wave equation[J].Radio Science, 2002, 37(2):1-11. http://ieeexplore.ieee.org/document/7770520/
|
[15] |
BARRIOS A E. Considerations in the development of the advanced propagation model (APM) for U. S. navy applications[C]//Proceedings of the International Radar Conference. Piscataway, NJ: IEEE Press, 2003: 77-82.
|
[16] |
AWADSALLAH R S, GEHMAN J Z, KUTTLER J R, et al.Modeling radar propagation in three-dimensional environments[J].Johns Hopkins APL Technical Digest, 2004, 25(2):101-111. https://www.mendeley.com/research-papers/modeling-radar-propagation-threedimensional-environments/
|
[17] |
NORMAN E D. Assessment of the wind farm impact on the radar: 1002. 2654v1[R]. Limours: Thales Air Systems, 2010: 1-55.
|
[18] |
LIN C C, REILLY J P.A site-specific model of radar terrain backscatter and shadowing[J].Johns Hopkins APL Technical Digest, 1997, 18(3):432-447. http://www.jhuapl.edu/techdigest/TD/td1803/lin.pdf
|
[19] |
米切尔.雷达系统模拟[M].北京:科学出版社, 1982:124-127.
MITCHELL R L.Radar signal simulation[M].Beijing:Science Press, 1982:124-127(in Chinese).
|
[20] |
许小剑, 黄培康.雷达系统及其信息处理[M].北京:电子工业出版社, 2010:156-158.
XU X J, HUANG P K.Radar system and signal processing[M].Beijing:Publishing House of Electronics Industry, 2010:156-158(in Chinese).
|
[21] |
FENG S, CHEN J.Law-angle reflectivity modeling of land clutter[J].IEEE Geosciences and Remote Sensing Letters, 2006, 3(2):254-258. doi: 10.1109/LGRS.2005.863847
|