Volume 44 Issue 4
Apr.  2018
Turn off MathJax
Article Contents
XU Xiaoming, ZHANG Wuxiang, DING Xilunet al. Modular design method for filament winding machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 746-758. doi: 10.13700/j.bh.1001-5965.2017.0233(in Chinese)
Citation: XU Xiaoming, ZHANG Wuxiang, DING Xilunet al. Modular design method for filament winding machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 746-758. doi: 10.13700/j.bh.1001-5965.2017.0233(in Chinese)

Modular design method for filament winding machine

doi: 10.13700/j.bh.1001-5965.2017.0233
Funds:

National Natural Science Foundation of China 51575018

More Information
  • Corresponding author: ZHANG Wuxiang, E-mail: zhangwuxiang@buaa.edu.cn
  • Received Date: 17 Apr 2017
  • Accepted Date: 26 May 2017
  • Publish Date: 20 Apr 2018
  • Winding machine is the core equipment for filament winding with the features of high production efficiency and stable product quality. To meet the requirements of customized and small batch production, the modular design method (MDM) is proposed to expand the function of winding machine. The system structure is analyzed, relation matrices between components are established, and the grouping genetic algorithm (GGA) is then employed to conduct modular optimization to cluster components into standard modules. Multi-objective optimization method based on non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) is proposed to create a complete system by combining instances with consideration of performance and cost simultaneously. The modular design method for the control system is presented based on distributed network controller for a bus system, and the network interface of the controller is standardized as independent function module, and then the rapid configuration of the controller is achieved according to the modular configuration of the mechanical structure. The k-nearest neighbor (kNN) method is used to classify the control mode by detecting the connection state of the module and the dynamic reconfiguration method based on component object model (COM) component to realize the state transition sequence and data exchange of the modules. The research on the modularization of mechanical structure, controller and software can realize the rapid reconfiguration of the winding machine, and expand the function of the winding machine.

     

  • loading
  • [1]
    顾轶卓, 李敏, 李艳霞, 等.飞行器结构用复合材料制造技术与工艺理论进展[J].航空学报, 2015, 36(8):2773-2797. http://www.cqvip.com/QK/91925X/201508/665828070.html

    GU Y Z, LI M, LI Y X, et al.Progress on manufacturing technology and process theory of aircraft composite structure[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese). http://www.cqvip.com/QK/91925X/201508/665828070.html
    [2]
    SOUTIS C.Carbon fiber reinforced plastics in aircraft construction[J].Materials Science and Engineering:A, 2005, 412(1-2):171-176. doi: 10.1016/j.msea.2005.08.064
    [3]
    PIRAN F A S, LACERDA D P, ANTUNES J A V, et al.Modularization strategy:Analysis of published articles on production and operations management(1999 to 2013)[J].The International Journal of Advanced Manufacturing Technology, 2016, 86(1-4):507-519. doi: 10.1007/s00170-015-8221-9
    [4]
    HUANG C C.Overview of modular product development[J].Proceedings of the National Science Council, 2000, 24(3):149-165.
    [5]
    LAU A K W, YAM R C M, TANG E.The impacts of product modularity on competitive capabilities and performance:An empirical study[J].International Journal of Production Economics, 2007, 105(1):1-20. doi: 10.1016/j.ijpe.2006.02.002
    [6]
    STONE R B, WOOD K L, CRAWFORD R H.A heuristic method for identifying modules for product architectures[J].Design Studies, 2000, 21(1):5-31. doi: 10.1016/S0142-694X(99)00003-4
    [7]
    KRENG V B, LEE T.Modular product design with grouping genetic algorithm-A case study[J].Computers & Industrial Engineering, 2004, 46(3):443-460. http://dl.acm.org/citation.cfm?id=1006327.1006331
    [8]
    WEI W, LIU A, LU S C Y, et al.A multi-principle module identification method for product platform design[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2015, 16(1):1-10. doi: 10.1631/jzus.A1400263
    [9]
    JOSE A, TOLLENAERE M.Modular and platform methods for product family design:Literature analysis[J].Journal of Intelligent Manufacturing, 2005, 16(3):371-390. doi: 10.1007/s10845-005-7030-7
    [10]
    KIMURA F, KATO S, HATA T, et al.Product modularization for parts reuse in inverse manufacturing[J].CIRP Annals-Manufacturing Technology, 2001, 50(1):89-92. doi: 10.1016/S0007-8506(07)62078-2
    [11]
    HUANG C C, KUSIAK A.Modularity in design of products and systems[J].IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 1998, 28(1):66-77. doi: 10.1109/3468.650323
    [12]
    高飞, 肖刚, 潘双夏, 等.产品功能模块划分方法[J].机械工程学报, 2007, 43(5):29-35. http://www.cqvip.com/QK/90288X/2007005/24534468.html

    GAO F, XIAO G, PAN S X, et al.Method of product function module partition[J].Chinese Journal of Mechanical Engineering, 2007, 43(5):29-35(in Chinese). http://www.cqvip.com/QK/90288X/2007005/24534468.html
    [13]
    FAN B, QI G, HU X, et al.A network methodology for structure-oriented modular product platform planning[J].Journal of Intelligent Manufacturing, 2015, 26(3):553-570. doi: 10.1007/s10845-013-0815-1
    [14]
    PANDREMENOS J, CHRYSSOLOURIS G.A neural network approach for the development of modular product architectures[J].International Journal of Computer Integrated, 2011, 24(10):879-887. doi: 10.1080/0951192X.2011.602361
    [15]
    KRENG V B, LEE T P.MPD with grouping genetic algorithm:A case study[J].Computers and Industrial Engineering, 2004, 46(3):443-460. doi: 10.1016/j.cie.2004.01.007
    [16]
    陆良, 杨殿阁, 顾铮珉, 等.采用模块化思想的汽车电器智能化设计方法[J].西安交通大学学报, 2010, 44(5):111-115. doi: 10.7652/xjtuxb201005023

    LU L, YANG D G, GU Z M, et al.Designing strategy for smart vehicle electrical/electronic devices based on modularization[J].Journal of Xi'an Jiaotong University, 2010, 44(5):111-115(in Chinese). doi: 10.7652/xjtuxb201005023
    [17]
    PRITSCHOW G, KIRCHER C, KREMER M, et al.Control systems for RMS and methods of their reconfiguration[M].Berlin:Springer, 2006:195-211.
    [18]
    何岭松, 张登攀, 赖红.可重构虚拟仪器系统[J].机械工程学报, 2005, 41(9):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb200509016

    HE L S, ZHANG D P, LAI H.Reconfigurable virtual instrument system[J].Chinese Journal of Mechanical Engineering, 2005, 41(9):78-81(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb200509016
    [19]
    DEB K, PRATAP A, AGARWAL S, et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. doi: 10.1109/4235.996017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views(771) PDF downloads(1144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return