Volume 44 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
XIAO Ronghong, LIN Yuzhen, ZHANG Chiet al. Effect of swirl number of pilot stage on TeLESS Ⅱ combustor's lean blow-out performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1265-1272. doi: 10.13700/j.bh.1001-5965.2017.0392(in Chinese)
Citation: XIAO Ronghong, LIN Yuzhen, ZHANG Chiet al. Effect of swirl number of pilot stage on TeLESS Ⅱ combustor's lean blow-out performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1265-1272. doi: 10.13700/j.bh.1001-5965.2017.0392(in Chinese)

Effect of swirl number of pilot stage on TeLESS Ⅱ combustor's lean blow-out performance

doi: 10.13700/j.bh.1001-5965.2017.0392
More Information
  • Corresponding author: LIN Yuzhen, E-mail:linyuzhen@buaa.edu.cn
  • Received Date: 12 Jun 2017
  • Accepted Date: 20 Oct 2017
  • Publish Date: 20 Jun 2018
  • The next generation of technology of low emission of stirred swirl (TeLESSⅡ)low-emission combustor developed by Beihang University adopted a central staged arrangement. The center of the dome was classic swirl cup pilot structure which could provide a stable ignition source for the combustor. The main stage arranged outer of the pilot stage which adopted a pre-mixed single axial cyclone design was used to reduce emission. The influence of the combination of the swirl number of the pilot first stage and the secondary stage on the blow-out performance of the combustor was studied. The pilot stage is found playing an important role in the stabilization of flame in low-emission combustor. The gas-oil ratio was measured in the single dome combustor under normal temperature and pressure conditions. The aerodynamic characteristics of different cases were analyzed by numerical calculation. The results show that the higher the total temperature in the recirculation zone is, the lower the gas-oil ratio for lean blow-out is, and the decrease of pilot secondary stage's swirl number isfavorable to the coupling between the flame and flow field. Therefore, the flame in the recirculation zone is more stable and the lean blow-out boundary becomes broader. With the increase of the pilot first stage's swirl number, the gas-oil ratio for lean blow-out is not reduced.

     

  • loading
  • [1]
    LEFEBVRE A H.Fuel effects on gas turbine combustion ignition, stability and combustion efficiebcy[J].ASME Journal of Engineering for Gas Turbines and Power, 1985, 107(1):24-37. doi: 10.1115/1.3239693
    [2]
    PERTERS J E, MELLOR A M.A spark ignition model for liquid fuel sprays applied to gas turbine combustor[J].Journal of Energy, 1982, 6(4):272-274. doi: 10.2514/3.48048
    [3]
    PERTERS J E, MELLOR A M.Characteristic time ignition model extended to an annular gas turbine combustor[J].Journal of Energy, 1982, 6(6):439-441. doi: 10.2514/3.48061
    [4]
    SEN S, CHAUDHARI R R, MUKHOPADHYAY A. Lean blowout detection techniques for partially premixed flames in a dump combustor[M]//AGARWAL A, PANDEY A, AGGARWAL S, et al. Novel combustion concepts for sustainable energy development. Berlin: Springer, 2014: 199-232.
    [5]
    YI T, GUTMARK E J.Real-time prediction of incipient lean blowout in gas turbine combustors[J].AIAA Journal, 2015, 45(7):1734-1739. doi: 10.2514/1.25847
    [6]
    SARKAR S, RAY A, MUKHOPADHYAY A, et al.Dynamic data-driven prediction of lean blowout in a swirl-stabilized combustor[J].Spray & Combustion Dynamics, 2015, 7(3):209-242. http://www.ingentaconnect.com/content/doaj/17568277/2015/00000007/00000003/art00002
    [7]
    FOUST M J, THOMSEN D, STICKLES R, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines: AIAA-2012-0936[R]Reston: AIAA, 2012.
    [8]
    MONGIA H C. Engineering aspects of complex gas turbine combustion mixers: PartⅠhigh ΔT: AIAA-2011-106[R]. Reston: AIAA, 2011.
    [9]
    邹博文, 许全宏, 曹文宇, 等.中心分级燃烧室耦合回流区贫油熄火机理[J].航空动力学报, 2013, 28(8):1759-1763. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201405002.htm

    ZOU B W, XU Q H, CAO W Y, et al.Lean blowout mechanism of coupled recirculation zone in concentric staged combustor[J].Journal of Aerospace Power, 2013, 28(8):1759-1763(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKDI201405002.htm
    [10]
    SULABH K D, JACOB E T, DRISCOOL J F, et al.Unsteady aspects of lean premixed-prevaporized (LPP) gas turbine combustors:Flame-flame interactions[J].Journal of Propulsion and Power, 2011, 27(3):631-641. doi: 10.2514/1.B34001
    [11]
    SULABH K D, JAMES F D. Instantaneous flow structures in a reacting gas turbine combustor: AIAA-2008-4683[R]. Reston: AIAA, 2008.
    [12]
    MOHAMMAD B S, JEMGS S M.Gas turbine combustor sector flow structure[J].Journal of Propulsion and Power, 2011, 27(3):710-717. doi: 10.2514/1.B34114
    [13]
    BAKE S, LAZIK W, DOERR T, et al. Development of lean-burn low-NOx combustion technology at rolls-royce deutschland[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. New York: ASME, 2008: 797-807.
    [14]
    MEIER U, HEINZE J, LANGE L, et al.Characterisation of the combustion performance of low emission fuel injectors with laser measurements[J].CEAS Aeronautical Journal, 2012, 3(1):45-53. doi: 10.1007/s13272-012-0042-z
    [15]
    YAMAMOTO T, SHIMODAIRA K, KUROSAWA Y, et al. Investigations of a staged fuel nozzle for aeroengines by multi-sector combustor test[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air. New York: ASME, 2010: 961-973.
    [16]
    YAMAMOTO T, SHIMODAIRA K, KUROSAWA Y, et al. Research and development of staging fuel nozzle for aeroengine[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air. New York: ASME, 2009: 639-646.
    [17]
    王铮钧, 索建秦, 黎明, 等.基于贫油预混预蒸发(LPP)的多点喷射低污染燃烧室头部方案研究[J].科学技术与工程, 2013, 13(34):10409-10420. doi: 10.3969/j.issn.1671-1815.2013.34.059

    WANG Z J, SUO J Q, LI M, et al.Study on the effects of simulation method of condition boundary on modal analysis[J].Science Technology and Engineering, 2013, 13(34):10409-10420(in Chinese). doi: 10.3969/j.issn.1671-1815.2013.34.059
    [18]
    刘富强, 穆勇, 刘存喜, 等.燃油分级对中心分级燃烧室NOx排放的影响[J].燃烧科学与技术, 2013, 19(3):254-260. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_rskxyjs201303010

    LIU F Q, MU Y, LIU C X, et al.Influence of fuel stage proportion on NOx emission from central stage combustor[J].Journal of Combustion Science and Technology, 2013, 19(3):254-260(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_rskxyjs201303010
    [19]
    邓远灏, 马存祥, 郭凯, 等.贫油预混预蒸发燃烧室排放试验研究[J].推进技术, 2016, 37(4):691-697. http://www.cqvip.com/QK/94195X/201301/44622227.html

    DENG Y H, MA C X, GUO K, et al.Experimental investigation on emission of lean premixed preevaporation combustor[J].Journal of Propulsion Technology, 2016, 37(4):691-697(in Chinese). http://www.cqvip.com/QK/94195X/201301/44622227.html
    [20]
    刘殿春, 董玉玺, 尚守堂, 等.单环腔中心分级燃烧室流场数值模拟[J].航空动力学报, 2010, 25(6):1251-1257. http://mall.cnki.net/magazine/article/HKDI201006009.htm

    LIU D C, DONG Y X, SHANG S T, et al.Numerical simulation of the flow field in a single annular concentric staged combustor[J].Journal of Aerospace Power, 2010, 25(6):1251-1257(in Chinese). http://mall.cnki.net/magazine/article/HKDI201006009.htm
    [21]
    高贤智, 李锋, 郭大鹏.超高温升中心分级燃烧室设计及计算分析[J].航空发动机, 2015, 41(1):9-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201501003

    GAO X Z, LI F, GUO D P.Design and computational analysis of ultra-High temperature rise concentric staged combustor[J].Aeroengine, 2015, 41(1):9-15(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201501003
    [22]
    郭凯, 马鑫, 马存祥, 等.一种贫油燃烧室进口温度和压力对污染物排放影响的试验研究[J].燃气涡轮试验与研究, 2014, 27(1):28-31. http://www.cqvip.com/QK/85037X/201401/48846961.html

    GUO K, MA X, MA C X, et al.Experimental research of the influence of inlet pressure and temperature on pollutant emissions for an inter-staged lean combustor[J].Gas Turbine Experiment and Research, 2014, 27(1):28-31(in Chinese). http://www.cqvip.com/QK/85037X/201401/48846961.html
    [23]
    付镇柏, 林宇震, 张弛, 等.中心分级燃烧室预燃级燃烧性能实验[J].航空动力学报, 2015, 30(1):46-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201501007

    FU Z B, LIN Y Z, ZHANG C, et al.Experiment of combustion performance of internally-staged combustor pilot stage[J].Journal of Aerospace Power, 2015, 30(1):46-52(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201501007
    [24]
    付镇柏, 林宇震, 傅奇慧, 等.不同台阶高度对中心分级燃烧室点火熄火性能的影响[J].航空动力学报2014, 29(5):1062-1070. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201405010

    FU Z B, LIN Y Z, FU Q H, et al.Effect of different step heights on ignition blowout performance of internally-staged combustor[J].Journal of Aerospace Power, 2014, 29(5):1062-1070(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201405010
    [25]
    李海涛, 许全宏, 付镇柏, 等.中心分级燃烧室预燃级贫油熄火性能试验[J].航空动力学报, 2014, 29(9):2188-2194. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkdlxb201409024

    LI H T, XU Q H, FU Z B, et al.Experiment on lean biow-out performance of pilot stage in internally-staged combustor[J].Journal of Aerospace Power, 2014, 29(9):2188-2194(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkdlxb201409024
    [26]
    代威, 林宇震, 张弛.第2级径向旋流器旋流数对燃烧室点火和贫油熄火性能的影响[J].航空动力学报, 2015, 30(5):1092-1098. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201505011.htm

    DAI W, LIN Y Z, ZHANG C.Effects of swirl number of second stage radial swirler on combustor ignition and lean blow-out performances[J].Journal of Aerospace Power, 2015, 30(5):1092-1098(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKDI201505011.htm
    [27]
    WANG B, ZHANG C, LIN Y, et al.Influence of main swirler vane angle on the ignition performance of TeLESS-Ⅱ combustor[J].Journal of Engineering for Gas Turbines & Power, 2016, 139(1):011501-011508. http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=2534528&resultClick=1
    [28]
    WANG B, ZHANG C, HUI X, et al. Influence of sleeve angle on the LBO performance of TeLESS-Ⅱ combustor: AIAA-2016-4693[R]. Reston: AIAA, 2016.
    [29]
    BEER J M, CHIGIER N A.Combustion aerodynamics[M].London:Applied Science Publishers Ltd., 1972.
    [30]
    BALLAL D R, LEFEBVRE A H.Weak extinction limits of turbulent flowing mixtures[J].Journal of Engineering for Power, 101(3):343-348. doi: 10.1115/1.3446582
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(718) PDF downloads(393) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return