Volume 44 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
YANG Bo, ZHAO Xiaotao, MIAO Jun, et al. Micro-thrust high-precision satellite formation system based on Cartwheel configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1147-1155. doi: 10.13700/j.bh.1001-5965.2017.0463(in Chinese)
Citation: YANG Bo, ZHAO Xiaotao, MIAO Jun, et al. Micro-thrust high-precision satellite formation system based on Cartwheel configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1147-1155. doi: 10.13700/j.bh.1001-5965.2017.0463(in Chinese)

Micro-thrust high-precision satellite formation system based on Cartwheel configuration

doi: 10.13700/j.bh.1001-5965.2017.0463
More Information
  • Corresponding author: YANG Bo, E-mail:yangbo@buaa.edu.cn
  • Received Date: 10 Jul 2017
  • Accepted Date: 20 Oct 2018
  • Publish Date: 20 Jun 2018
  • Micro-thrust satellite formation can better complete the high-precision aerospace satellite formation tasks. Close-range cooperative work is the basic feature of satellite formation flight, and the specific geometric configuration and relative movement between the satellites is the basic condition of the cooperative formation. But perturbation and other interference factors lead to the uncertain change of the relative relationship. It is necessary to design the formation configuration and information topology to achieve long-term high-precision formation maintenance. How-ever, the micro-thruster's mechanism requires a higher reliability and fastness of the satellite formation system. To this end, a micro-thrust satellite formation system based on Cartwheel configuration is proposed, and a topological network structure is designed to meet the system performance requirements. An online trajectory optimization algorithm based on particle swarm optimization (PSO) algorithm was designed. The application to the control system of satellite formation maintenance achieves a high-precision fast and stable control with low energy consumption.

     

  • loading
  • [1]
    REICHBACH J, SEDWICK R J, MARTINEZ-SANCHEZ M. Micropropulsion system selection for precision formation flying satellites[D]. Cambridge: Massachusetts Institute of Technology, 2001.
    [2]
    SCHARF D P, KEIM J A, HADAEGH F Y.Flight-like ground demonstrations of precision maneuvers for spacecraft formations-Part Ⅰ[J].IEEE Systems Journal, 2010, 4(1):84-95. doi: 10.1109/JSYST.2010.2042532
    [3]
    SCHARF D P, KEIM J A, HADAEGH F Y.Flight-like ground demonstrations of precision maneuvers for spacecraft formations-Part Ⅱ[J].IEEE Systems Journal, 2010, 4(1):96-106. doi: 10.1109/JSYST.2010.2044281
    [4]
    RAYMAN M D, VARGHESE P.The Deep Space 1 extended mission[J].Acta Astronautica, 2001, 48(5-12):693-705. doi: 10.1016/S0094-5765(01)00044-3
    [5]
    RACCA G D, MARINI A, STAGNARO L, et al.SMART-1 mission description and development status[J].Planetary & Space Science, 2002, 50(14):1323-1337. https://www.deepdyve.com/lp/elsevier/smart-1-mission-description-and-development-status-Gnv3W9n7sN
    [6]
    刘博, 特日格乐, 王聪, 等.印度"一箭104星"任务简析[J].国际太空, 2017(4):55-61. http://mall.cnki.net/magazine/magadetail/GJTK201704.htm

    LIU B, TERGEL, WANG C, et al.Analysis on the mission of India's launching of 104 Satellites on a single rocket[J].Space International, 2017(4):55-61(in Chinese). http://mall.cnki.net/magazine/magadetail/GJTK201704.htm
    [7]
    杨灵芝, 魏延明, 刘旭辉.MEMS固体微推力器阵列发展研究[J].空间控制技术与应用, 2016, 42(1):13-19. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHK200603005.htm

    YANG L Z, WEI Y M, LIU X H.Development of MEMS solid propellant micro-thruster array[J].Aerospace Control and Application, 2016, 42(1):13-19(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HJHK200603005.htm
    [8]
    MASSONNET D.Capabilities and limitations of the interferometric Cartwheel[J].IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(3):506-520. doi: 10.1007%2Fs10409-010-0361-4
    [9]
    范林东, 杨博, 苗峻, 等.基于SiC MEMS阵列的高精度微纳卫星编队保持[J].中国空间科学技术, 2016, 36(2):37-45. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgkjkxjs201602005

    FAN L D, YANG B, MIAO J, et al.High precision micro-nano satellite formation keeping based on SiC MEMS micro thruster array[J].Chinese Space Science and Technology, 2016, 36(2):37-45(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgkjkxjs201602005
    [10]
    张安慧. 大规模航天器编队协同控制性能分析与信息拓扑设计[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    ZHANG A H. Performance analysis and information topology design for large scale spacecraft formation coordinated control[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
    [11]
    TILLERSON M, INALHAN G, HOW J P.Coordination and control of distributed spacecraft systems using convex optimization techniques[J].International Journal of Robust & Nonlinear Control, 2002, 12(2-3):207-242. doi: 10.1002/rnc.683/abstract?globalMessage=0
    [12]
    ALFRIEND K, VADALI S R, GURFIL P, et al.Spacecraft formation flying:Dynamics, control and navigation[M].Oxford:Butterworth-Heinemann, 2009.
    [13]
    JOHNSON L B, CHOI H L, PONDA S S, et al.Decentralized task allocation using local information consistency assumptions[J].Journal of Aerospace Information Systems, 2017, 14(2):103-122. doi: 10.2514/1.I010461
    [14]
    ULYBYSHEV Y.Long-term formation keeping of satellite constellation using linear-quadratic controller[J].Journal of Gui-dance, Control, and Dynamics, 1998, 21(1):109-115. doi: 10.2514/2.4204
    [15]
    FERNANDEZ-MARQUEZ J L, SERUGENDO G D M, MONTAGNA S, et al.Description and composition of bio-inspired design patterns:A complete overview[J].Natural Computing, 2013, 12(1):43-67. doi: 10.1007/s11047-012-9324-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(906) PDF downloads(379) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return