Citation: | CAO Huiling, KAN Yuxiang, XUE Penget al. Exploration of engine VSV regulation law using support vector regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1371-1377. doi: 10.13700/j.bh.1001-5965.2017.0523(in Chinese) |
The engine variable stator vane (VSV) regulation law is extremely complex, and through mining quick access recorder (QAR) data, the VSV regulation law is studied. Firstly, the support vector regre-ssion (SVR) model based on particle swarm optimization (PSO) is established through the QAR data of PW4077D engine health condition to explore the regulation law of VSV. Then, the PSO-SVR model is validated by the subsequent flight data, and the verification results are compared with the traditional PSO-BP neural network model. Finally, the PSO-SVR model is applied to engine fault diagnosis. The results show that the regression prediction accuracy of the PSO-SVR model is better than that of the PSO-BP neural network model, and it can accurately reflect the VSV regulation rule. It can be used in the condition monitoring and fault dia-gnosis of engine, and can also provide reference for the design of VSV control system.
[1] |
唐庆如, 孔萌.CFM56-7B发动机VSV结构损伤分析[J].航空维修与工程, 2011(4):31-33. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-QXJX200907001214.htm
TANG Q R, KONG M.Analysis of CFM56-7B VSV structural damage[J].Aviation Maintenance Engineering, 2011(4):31-33(in Chinese). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-QXJX200907001214.htm
|
[2] |
李世林.VSV系统对CFM56发动机喘振的影响分析[J].科学技术与工程, 2011, 11(20):4934-4936. doi: 10.3969/j.issn.1671-1815.2011.20.063
LI S L.Research on VSV faults based CFM56 engine surge[J].Science Technology and Engineering, 2011, 11(20):4934-4936(in Chinese). doi: 10.3969/j.issn.1671-1815.2011.20.063
|
[3] |
黄爱华.涡扇发动机可调静子叶片控制规律研究[J].燃气涡轮试验与研究, 2017, 30(1):48-51. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y272250
HUANG A H.Control law of variable stator vane for turbofan engine[J].Gas Turbine Experiment and Research, 2017, 30(1):48-51(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y272250
|
[4] |
吴秀宽, 林森. 某涡扇发动机风扇进口可调导流叶片调节规律分析[C]//第五届中国航空学会青年科技论坛文集(第5集). 北京: 北京航空航天大学出版社, 2012: 227-231.
WU X K, LIN S. The analyse about the control law of turbofan'IGV[C]//Proceedings of the Fifth China Aviation Society Youth Science and Technology Forum (Fifth Episodes). Beijing: Beihang University Press, 2012: 227-231(in Chinese).
|
[5] |
曹志鹏, 刘波, 丁伟.静叶角度调节对组合压气机性能优化机理[J].北京航空航天大学学报, 2007, 33(8):878-881. http://bhxb.buaa.edu.cn/CN/abstract/abstract9409.shtml
CAO Z P, LIU B, DING W.Stator setting angles adjustment on performance improvement of axial-centrifugal compressor[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(8):878-881(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9409.shtml
|
[6] |
张健, 任铭林.静叶角度调节对压气机性能影响的试验研究[J].航空动力学报, 2000, 15(1):27-30. http://www.cqvip.com/qk/91591X/200001/4105053.html
ZHANG J, REN M L.Experimental investigation on effect of stator vane angle adjustment on compressor performance[J].Journal of Aerospace Power, 2000, 15(1):27-30(in Chinese). http://www.cqvip.com/qk/91591X/200001/4105053.html
|
[7] |
张宇飞, 么子云, 唐松林, 等.一种基于主成分分析和支持向量机的发动机故障诊断方法[J].中国机械工程, 2016, 27(24):3307-3311. doi: 10.3969/j.issn.1004-132X.2016.24.008
ZHANG Y F, YAO Z Y, TANG S L, et al.An engine fault diagnosis method based on PCL and SVR[J].China Mechanical Engineering, 2016, 27(24):3307-3311(in Chinese). doi: 10.3969/j.issn.1004-132X.2016.24.008
|
[8] |
BI F R, LIU Y P.Fault diagnosis of valve clearance in diesel engine based on BP neural network and support vector machine[J].Transactions of Tianjin University, 2016, 22(6):536-543. doi: 10.1007/s12209-016-2675-1
|
[9] |
殷锴, 钟诗胜, 那媛, 等.基于BP神经网络的航空发动机故障检测技术研究[J].航空发动机, 2017, 43(1):53-57. http://www.oalib.com/paper/5111460
YIN K, ZHONG S S, NA Y, et al.Research on aeroengine fault detection technology based on BP neural network[J].Aeroengine, 2017, 43(1):53-57(in Chinese). http://www.oalib.com/paper/5111460
|
[10] |
栾圣罡. 基于气路参数样本的航空发动机状态监视方法与系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
LUAN S G. Aeroengine condition monitoring technique and system based on gas path parameter sample[D]. Harbin: Harbin Institute of Technology, 2008(in Chinese).
|
[11] |
刘永建. 基于改进神经网络的民机发动机故障诊断与性能预测研究[D]. 南京: 南京航空航天大学, 2012.
LIU Y J. Research on modified neural network for fault diagnosis and performance prediction of aeroengine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
|
[12] |
王芳. 基于支持向量机的沪深300指数回归预测[D]. 济南: 山东大学, 2015.
WANG F. CSI 300 index regression prediction based on support vector machine[D]. Jinan: Shandong University, 2015(in Chinese).
|
[13] |
史峰, 王辉, 郁磊, 等.智能算法30个案例分析[M].北京:北京航空航天大学出版社, 2011.
SHI F, WANG H, YU L, et al.30 cases analysis of intelligent algorithm[M].Beijing:Beihang University Press, 2011(in Chinese).
|
[14] |
崔智全. 民航发动机气路参数偏差值挖掘方法及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
CUI Z Q. Civil aeroengine gas path parameter deviation mining method with application[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
|
[15] |
Boeing. 777 aircraft maintenance manual[Z]. Chicago: Boeing, 2015.
|
[16] |
彭泽琰, 刘刚.航空燃气轮机原理[M].北京:国防工业出版社, 2000.
PENG Z Y, LIU G.Principles of aviation gas turbines[M].Beijing:National Defense Industry Press, 2000(in Chinese).
|
[17] |
Pratt & Whitney Company. ECMⅡtraining manual[Z]. Hartford: Pratt & Whitney Company, 1994.
|
[18] |
周百政, 曹惠玲.基于EHM软件思路的QAR数据处理[J].航空维修与工程, 2010(4):60-62. http://industry.wanfangdata.com.cn/hk/Magazine?magazineId=hkgcywx&yearIssue=2010_4
ZHOU B Z, CAO H L.QAR data processing based on the method of EHM software[J].Aviation Maintenance & Engineering, 2010(4):60-62(in Chinese). http://industry.wanfangdata.com.cn/hk/Magazine?magazineId=hkgcywx&yearIssue=2010_4
|