Citation: | YAO Jingjing, ZHENG Dezhi, MA Kang, et al. Theoretical research on multi-axis maglev low-frequency vibration sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1481-1488. doi: 10.13700/j.bh.1001-5965.2017.0524(in Chinese) |
A new maglev low-frequency vibration sensor was proposed, which was used for multi-axis measurement of aerospace micro-vibration. It used micro-spring and the hybrid structure with electromagnets and permanent magnets as the supporting element. The axial displacement detection circuit and the photoelectric displacement sensors were used to measure the relative displacement between the maglev mass block and the shell and realize the multi-axis measurement of low-frequency vibration signals. When the sensor was used for dynamic measurement, the maglev mass block could return to the equilibrium position and keep stable levitation under the combined action of electromagnetic attractive force, gravity and spring force. The equivalent bearing stiffness coefficient and the equivalent damping coefficient of the system could be controlled by adjusting the control current of the electromagnetic coil, which can reduce the natural frequency effectively and extend application range of the sensor. Theoretical analyses show that the lower-cut-off frequency of the sensor is 0.6 Hz and it has better low-frequency characteristics. The proposed method provides new thought for designing multi-axis low-frequency vibration sensor.
[1] |
赵锦春.低频超低频振动计量技术应用分析[J].信息技术与标准化, 2011(5):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxjsybzh201105018
ZHAO J C.The application prospects of metrology technology of low and super low-frequency vibration measurement[J].Information Technology & Standardization, 2011(5):78-81(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxjsybzh201105018
|
[2] |
江东, 杨嘉祥.基于磁悬浮效应的三维振动测量[J].仪器仪表学报, 2011, 32(3):557-562. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1347952
JIANG D, YANG J X.Three-dimensional vibration measurement based on magnetic levitation effect[J].Chinese Journal of Scientific Instrument, 2011, 32(3):557-562(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1347952
|
[3] |
PARASHAR S K, KUMAR A.Three-dimensional analytical modeling of vibration behavior of piezoceramic cylindrical shells[J].Archive of Applied Mechanics, 2015, 85(5):641-656. doi: 10.1007/s00419-014-0977-0
|
[4] |
YURIN A I, DMITRIEV A V, KRASIVSKAYA M I, et al.Adaptive contactless fiber-optic vibration displacement sensor[J].Measurement Techniques, 2017, 59(11):1146-1150. doi: 10.1007/s11018-017-1106-6
|
[5] |
袁新江, 姜洋, 汪磊磊, 等.大型精密测量设备的微振研究[J].电子机械工程, 2012, 28(1):13-16. http://d.old.wanfangdata.com.cn/Periodical/dzjxgc201201003
YUAN X J, JIANG Y, WANG L L, et al.Research on micro-vibration of large-scale precise measurement equipment[J].Electro-Mechanical Engineering, 2012, 28(1):13-16(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzjxgc201201003
|
[6] |
樊尚春.传感器技术及应用[M].3版.北京:北京航空航天大学出版社, 2016:308-314.
FAN S C.Sensor technology and application[M].3rd ed.Beijing:Beihang University Press, 2016:308-314(in Chinese).
|
[7] |
孙承文. 基于DVD光读取头的超低频振动传感器机理的研究[D]. 合肥: 合肥工业大学, 2009: 5-8. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1509116
SUN C W. The research on mechanism of ultra-low frequency vibration sensor mechanism based on DVD pickup[D]. Hefei: Hefei University of Technology, 2009: 5-8(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1509116
|
[8] |
裴雪红. 基于改进RBF神经网络的PID控制[D]. 哈尔滨: 哈尔滨理工大学, 2010: 28-32. http://cdmd.cnki.com.cn/Article/CDMD-11914-1011041676.htm
PEI X H. Improved PID control based on RBF neural network[D]. Harbin: Harbin University of Science and Technology, 2010: 28-32(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-11914-1011041676.htm
|
[9] |
陈兴华. 高温超导EMS磁浮系统的鲁棒控制器的研究[D]. 成都: 西南交通大学, 2008: 4-8. http://d.wanfangdata.com.cn/Thesis/Y1345716
CHEN X H. Study on robost controller for high-temperature superconductor EMS system[D]. Chengdu: Southwest Jiaotong University, 2008: 4-8(in Chinese). http://d.wanfangdata.com.cn/Thesis/Y1345716
|
[10] |
VENGHI L E, GONZALEZ G N, SERRA F M.Implementation and control of a magnetic levitation system[J].IEEE Latin America Transactions, 2016, 14(6):2651-2656. doi: 10.1109/TLA.2016.7555233
|
[11] |
USWARMAN R, CAHYADI A I, WAHYUNGGORO O. Control of a magnetic levitation system using feedback linearization[C]//International Conference on Computer, Control, Informatics and Its Applications. Piscataway, NJ: IEEE Press, 2014: 95-98. http://ieeexplore.ieee.org/document/6819156/
|
[12] |
BOONSATIT N, PUKDEBOON C.Adaptive fast terminal sliding mode control of magnetic levitation system[J].Journal of Control Automation & Electrical Systems, 2016, 27(4):1-9. http://cn.bing.com/academic/profile?id=8aa319420b7be6ba530d34562b08f7b6&encoded=0&v=paper_preview&mkt=zh-cn
|
[13] |
高志华, 胡业发.磁力轴承刚度阻尼特性研究[J].中国制造业信息化, 2005, 34(2):130-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whqcgydxxb200104029
GAO Z H, HU Y F.Research on characteristic of stiffness and damping for active magnetic bearing[J].Machine Design and Manufacturing Engineering, 2005, 34(2):130-132(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whqcgydxxb200104029
|
[14] |
江东, 高颖.磁悬浮效应检振系统设计[J].电机与控制学报, 2008, 12(3):343-347. http://www.cqvip.com/qk/90977A/200803
JIANG D, GAO Y.Vibration measuring principle and system based on magnetic levitation effect[J].Electric Machines and Control, 2008, 12(3):343-347(in Chinese). http://www.cqvip.com/qk/90977A/200803
|
[15] |
汪龙芳, 贺卫亮.基于索膜有限元模型的翼伞气动变形仿真[J].北京航空航天大学学报, 2017, 43(1):47-52. http://bhxb.buaa.edu.cn/CN/abstract/abstract13924.shtml
WANG L F, HE W L.Parafoil aerodynamic deformation simulation based on cable-membrane finite element model[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):47-52(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13924.shtml
|
[16] |
LI Z, LUN Q Q.Analysis of magnetic field and levitation force characteristics for 3-DOF deflection type PM motors[J].Journal-Chinese Institute of Engineers, 2016, 39(6):1-9. http://cn.bing.com/academic/profile?id=3b0dc1322c7159d96f5116aa9f87b5c6&encoded=0&v=paper_preview&mkt=zh-cn
|
[17] |
安建军. 冲击波压力传感器动态灵敏度研究[D]. 太原: 中北大学, 2008: 11-14. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1321464
AN J J. The research of the dynamic sensitivity of the shock wave pressure sensor[D]. Taiyuan: Zhongbei University, 2008: 11-14(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1321464
|
[18] |
佘天莉. 测振传感器的动态特性补偿研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2006: 17-18. http://cdmd.cnki.com.cn/Article/CDMD-85406-2006093733.htm
SHE T L. The research on dynamic characteristics compensation of vibration sensor[D]. Harbin: Institute of Engineering Mechanics China Seismological Bureau, 2006: 17-18(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-85406-2006093733.htm
|
[19] |
KUREK J. Step response identification of inertial model for oscillating system[M]//JANUSZ K. Advanced mechatronics solutions. Berlin: Springer International Publishing, 2016: 51-56.
|
[20] |
朱中华. 微压压力传感器的设计与研究[D]. 镇江: 江苏大学, 2008: 28-29. http://cdmd.cnki.com.cn/Article/CDMD-10299-2008095424.htm
ZHU Z H. Design and research of micropressure sensor[D]. Zhenjiang: Jiangsu University, 2008: 28-29(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10299-2008095424.htm
|
[21] |
LANG Z Q, BILLINGS S A.Output frequency characteristics of nonlinear systems[J].International Journal of Control, 2015, 64(6):1049-1067. http://cn.bing.com/academic/profile?id=515f1c4b1002b8d465fa3ed04e757cb8&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
TAN N, ATHERTON D P, YVCE A.Computing step and impulse responses of closed loop fractional order time delay control systems using frequency response data[J].International Journal of Dynamics & Control, 2016, 5(1):1-10. http://cn.bing.com/academic/profile?id=108ff81a4f316239025270c0904ebc8f&encoded=0&v=paper_preview&mkt=zh-cn
|