Volume 44 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
WEI Zhenglei, ZHAO Hui, HUANG Hanqiao, et al. Dynamic UCAVs cooperative task allocation based on SAGWO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1651-1664. doi: 10.13700/j.bh.1001-5965.2017.0589(in Chinese)
Citation: WEI Zhenglei, ZHAO Hui, HUANG Hanqiao, et al. Dynamic UCAVs cooperative task allocation based on SAGWO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1651-1664. doi: 10.13700/j.bh.1001-5965.2017.0589(in Chinese)

Dynamic UCAVs cooperative task allocation based on SAGWO algorithm

doi: 10.13700/j.bh.1001-5965.2017.0589
Funds:

National Natural Science Foundation of China 61601505

Aeronautical Science Foundation of China 20155196022

More Information
  • Corresponding author: WEI Zhenglei, E-mail: zhenglei_wei@126.com
  • Received Date: 21 Sep 2017
  • Accepted Date: 11 Dec 2017
  • Publish Date: 20 Aug 2018
  • Through analyzing unmanned combat aerial vechicle (UCAV) advantage probability and task joint threat and defining task time, the task allocation model for UCAVs with multi-constraint dynamic task allocation is built up, which takes target value damage, UCAV attrition and task expending time as the performance indexes, and the improved grey wolf optimization (GWO) algorithm is used to solve the model. Aimed at the flaw of early convergence from the original algorithm, the GWO algorithm is improved by proposing a self-adaptive adjustment strategy and a step-out local optimum strategy, using quadratic curve control method. According to the characteristics of UCAVs dynamic cooperative task allocation, target task sequence coding is designed to present the UCAVs dynamic task allocation method based on self-adaptive GWO (SAGWO) algorithm. Finally, the simulation results for static and dynamic task allocation show that the task allocation method based on SAGWO algorithm is valid, and compared with other algorithms, the optimizing process is rapid and accurate.

     

  • loading
  • [1]
    龙涛, 朱华勇, 沈林成.多UCAV协同中基于协商的分布式任务分配研究[J].宇航学报, 2006, 27(3):457-462. doi: 10.3321/j.issn:1000-1328.2006.03.026

    LONG T, ZHU H Y, SHEN L C.Negotiation-based distributed task allocation for cooperative multiple unmanned combat aerial vehicles[J].Journal of Astronautics, 2006, 27(3):457-462(in Chinese). doi: 10.3321/j.issn:1000-1328.2006.03.026
    [2]
    杨啸天, 刘小军, 冯金富, 等.不确定环境下空地多目标攻击优先权决策[J].南京理工大学学报, 2012, 36(4):567-571. doi: 10.3969/j.issn.1005-9830.2012.04.003

    YANG X T, LIU X J, FENG J F, et al.Priority decision of air to surface multi-target attack under uncertainty[J].Journal of Nanjing University of Science and Technology, 2012, 36(4):567-571(in Chinese). doi: 10.3969/j.issn.1005-9830.2012.04.003
    [3]
    王永泉, 罗建军.基于多群体改进萤火虫算法的UCAV协同多目标分配[J].西北工业大学学报, 2014, 32(3):451-455. doi: 10.3969/j.issn.1000-2758.2014.03.023

    WANG Y Q, LUO J J.Target assignment in cooperative attacking of UCAVs based on multi-intelligence improved glowworm swarm optimization algorithm[J].Journal of Northwestern Polytechnical University, 2014, 32(3):451-455(in Chinese). doi: 10.3969/j.issn.1000-2758.2014.03.023
    [4]
    颜骥, 李相民, 刘波.基于离散粒子群-郭涛算法分配多无人机协同任务[J].国防科技大学学报, 2015, 37(4):165-171. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GFKJ201504027&dbname=CJFD&dbcode=CJFQ

    YAN J, LI X M, LIU B.Cooperative task allocation of multi-UAVs with mixed DPSO-GT algorithm[J].Journal of National University of Defense Technology, 2015, 37(4):165-171(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GFKJ201504027&dbname=CJFD&dbcode=CJFQ
    [5]
    RABBATH C A, GOGNON E, LAUZON M.On the cooperative control of multiple unmanned aerial vehicles[J].IEEE Canadian Review, 2004(46):15-19. http://canrev.ieee.ca/cr46/pages15-19.pdf
    [6]
    AMATO P, FARINA M.An alift-inspired evoluntionary algorithm for dynamic multiobjective optimization problems[J].Soft Computing:Methodologies and Applications, 2005, 32:113-125. doi: 10.1007/3-540-32400-3_9
    [7]
    魏政磊, 赵辉, 韩邦杰, 等.基于自适应GWO的多UCAV协同攻击目标决策[J].计算机工程与应用, 2016, 52(18):257-261. doi: 10.3778/j.issn.1002-8331.1601-0316

    WEI Z L, ZHAO H, HAN B J, et al.Research on cooperative attack decision of unmanned combat aerial vehicles using self-adaptive grey wolf optimization[J].Computer Engineering and Application, 2016, 52(18):257-261(in Chinese). doi: 10.3778/j.issn.1002-8331.1601-0316
    [8]
    罗德林, 段海滨, 吴顺祥, 等.基于启发式蚁群算法的协同多目标攻击空战决策研究[J].航空学报, 2006, 27(6):1166-1170. doi: 10.3321/j.issn:1000-6893.2006.06.034

    LUO D L, DUAN H B, WU S X, et al.Research on air combat decision-making for cooperative multiple target attack using heuristic ant colony algorithm[J].Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1166-1170(in Chinese). doi: 10.3321/j.issn:1000-6893.2006.06.034
    [9]
    郑昌文, 严平, 丁明跃.飞行器航迹规划研究现状与趋势[J].宇航学报, 2007, 28(6):1441-1446. doi: 10.3321/j.issn:1000-1328.2007.06.001

    ZHENG C W, YAN P, DING M Y.Research status and trend of route planning for flying vehicles[J].Journal of Astronautics, 2007, 28(6):1441-1446(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.06.001
    [10]
    王宝龙, 黄考利, 马立元, 等.基于依赖矩阵的测试性分析[J].计算机测量与控制, 2011, 19(6):1260-1265. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201106002

    WANG B L, HUANG K L, MA L Y, et al.Dependency matrix based testability analysis[J].Computer Measurement & Control, 2011, 19(6):1260-1265(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201106002
    [11]
    王庆江, 彭军, 曾儒伟, 等.无人机对地多目标攻击决策研究[J].电光与控制, 2014, 21(11):57-61. doi: 10.3969/j.issn.1671-637X.2014.11.011

    WANG Q J, PENG J, ZENG R W, et al.Decision-making of UAVs for air-to-ground multi-target attacking[J].Electronics Optics & Control, 2014, 21(11):57-61(in Chinese). doi: 10.3969/j.issn.1671-637X.2014.11.011
    [12]
    潘峰, 陈杰, 任智平, 等.基于计算智能方法的无人机任务指派约束优化模型研究[J].兵工学报, 2009, 30(12):1706-1713. doi: 10.3321/j.issn:1000-1093.2009.12.026

    PAN F, CHEN J, REN Z P, et al.Research on vehicle assignment model for constraints handing based on computational intelligence algorithms[J].Acta Armamentarii, 2009, 30(12):1706-1713(in Chinese). doi: 10.3321/j.issn:1000-1093.2009.12.026
    [13]
    CHANDLER P R, PACHTER M, SWAROOP D, et al. Complexity in UAV cooperative control[C]//The Proceedings of American Control Conference. Piscataway, NJ: IEEE Press, 2012: 1831-1836. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1023833
    [14]
    SEYEDALI M, SEYED M M, ANDREW L.Grey wolf optimizer[J].Advances in Engineering Software, 2014, 69:46-61. doi: 10.1016/j.advengsoft.2013.12.007
    [15]
    SEYEDALI M, SHAHRZAD S, SEYED M M, et al.Multi-objective grey wolf optimizer:A novel algorithm for multi-criterion optimization[J].Expert Systems With Application, 2016, 47:106-119. doi: 10.1016/j.eswa.2015.10.039
    [16]
    ZHU A J, XU C P.Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC[J].Journal of Systems Engineering and Electronics, 2015, 26(2):317-328. doi: 10.1109/JSEE.2015.00037
    [17]
    龙文, 赵东泉, 徐松金.求解约束优化问题的改进灰狼优化算法[J].计算机应用, 2015, 35(9):2590-2595. doi: 10.3969/j.issn.1001-3695.2015.09.007

    LONG W, ZHAO D Q, XU S J.Improved grey wolf optimization algorithm for constrained optimization problem[J].Journal of Computer Application, 2015, 35(9):2590-2595(in Chinese). doi: 10.3969/j.issn.1001-3695.2015.09.007
    [18]
    魏政磊, 赵辉, 李牧东, 等.控制参数值非线性调整策略的灰狼优化算法[J].空军工程大学学报(自然科学版), 2016, 17(3):104-110. http://d.old.wanfangdata.com.cn/Periodical/kjgcdxxb201603013

    WEI Z L, ZHAO H, LI M D, et al.A grey wolf optimization algorithm based on nonlinear adjustment strategy of control parameter[J].Journal of Air Force Engineering University(Natural Science Edition), 2016, 17(3):104-110(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kjgcdxxb201603013
    [19]
    周敏, 李太勇.粒子群优化算法中的惯性权重值非线性调整[J].计算机工程, 2011, 37(5):68-72. doi: 10.3969/j.issn.1000-3428.2011.05.023

    ZHOU M, LI T Y.Nonlinear adjustment strategy of inertia weight in particle swarm optimization algorithm[J].Computer Engineering, 2011, 37(5):68-72(in Chinese). doi: 10.3969/j.issn.1000-3428.2011.05.023
    [20]
    CHATTERJEE A, SIARRY P.Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J].Computers & Operations Research, 2006, 33(3):859-871. http://www.sciencedirect.com/science/article/pii/S0305054804002023
    [21]
    李牧东, 赵辉, 翁兴伟.具有广泛学习策略的回溯搜索优化算法[J].系统工程与电子技术, 2015, 37(4):958-963. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201504036

    LI M D, ZHAO H, WENG X W.Backtracking search optimization algorithm with comprehensive learning strategy[J].Systems Engineering and Electronics, 2015, 37(4):958-963(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201504036
    [22]
    SOLIS F, WETS R.Minimization by random search techniques[J].Mathematics of Operations Research, 1981, 6(1):19-30. doi: 10.1287/moor.6.1.19
    [23]
    TAL S, STEVEN J R, ANDREW G S, et al.Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms[J].Computers & Operations Research, 2006, 33(11):3252-3269. http://www.sciencedirect.com/science/article/pii/S030505480500095X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(17)

    Article Metrics

    Article views(736) PDF downloads(438) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return