Citation: | CHEN Guoyue, WANG Hua, REN Yuan, et al. A new gyro torquer's non-circular error compensation method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1755-1763. doi: 10.13700/j.bh.1001-5965.2017.0604(in Chinese) |
Based on the structural design of the Lorentz force magnetic bearing (LFMB), a kind of torquer's non-circular error compensation method is put forward to enhance the sensitivity accuracy of magnetically suspended control sensitive gyroscope (MSCSG) to gyro carrier attitude. First, for a new type MSCSG with double spherical envelope rotor, the structure features of MSCSG and the attitude angular velocity measurement principle of the gyro carrier are introduced and the radius error model of MSCSG torquer, the interference torque model of rotor's deflection and the measurement error model of the gyro carrier's attitude angular velocity are set up. Then, the roundness of torquer is measured through the experiment, and data fitting is conducted by MATLAB to obtain the non-circular characteristic of the torquer. The non-circular characteristic is described by Legendre polynomial series, and the measurement error of the gyro carrier's attitude angular velocity caused by the torquer's non-circular error is compensated effectively. Finally, the effect of error compensation is verified by the simulation and the results show that the compensation method makes the measurement error of the gyro carrier's attitude angular velocity reduce by 83.5%. In addition, the proposed method can solve the common problems related to LFMB gyro.
[1] |
FANG J, WANG C, TANG J.Modeling and analysis of a novel conical magnetic bearing for vernier-gimballing magnetically suspended flywheel[J].ARCHIVE Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2013, 228(13):2416-2425.
|
[2] |
HAN B, ZHENG S, WANG Z, et al.Design, modeling, fabrication, and test of a large-scale single-gimbal magnetically suspended control moment gyro[J].IEEE Transactions on Industrial Electronics, 2015, 62(12):7424-7435. doi: 10.1109/TIE.2015.2459052
|
[3] |
CUI P, CUI J, YANG Q, et al.The coupling characteristic investigation of double-gimbal magnetically suspended control moment gyro used on agile maneuver spacecraft[J].Mathematical Problems in Engineering, 2015, 2015:278145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004222245
|
[4] |
REN Y, FANG J.Modified cross feedback control for a magnetically suspended flywheel rotor with significant gyroscopic effects[J].Mathematical Problems in Engineering, 2014, 2014:325913. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002936295
|
[5] |
BOLETIS A, BARROT F, MOSER R. Three axis active magnetic levitation for inertial sensing systems: US7252001[P]. 2007-08-07.
|
[6] |
BOSGIRAUD T. Two degrees of freedom miniaturized gyroscope based on active magnetic bearings[D]. Lausanne: Ecole Polytechnique Federale de Lausanne, 2008: 1-15.
|
[7] |
ZHANG H H.Measuring attitude rates through angular momentum gyros[J].Journal of Spacecraft & Rockets, 2012, 36(36):919-921. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024240242/
|
[8] |
TYC G, STALEY D A, WHITEHEAD W R, et al. GyroWheel TM-An innovative new actuator/sensor for 3-axis spacecraft attitude control[C]//Proceedings of 13th Annual AIAA/USU Conference on Small Satellites. Reston: AIAA, 1999: 23-26.
|
[9] |
WALKTY I, PETERSEN J, DOHERTY T, et al. SCISAT-1 ACE mission C&DH unit development[C]//Proceedings of 14th Annual AIAA/USU Conference on Small Satellites. Reston: AIAA, 2000: 1-13.
|
[10] |
MARUYAMA Y, MIZUNO T, TAKASAKI M, et al.An application of active magnetic bearing to gyroscopic and inertial sensors[J].Journal of System Design & Dynamics, 2008, 2(1):155-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000221330
|
[11] |
刘彬, 房建成, 刘刚.一种磁悬浮陀螺飞轮方案设计与关键技术分析[J].航空学报, 2011, 32(8):1478-1487. http://d.old.wanfangdata.com.cn/Periodical/hkxb201108012
LIU B, FANG J C, LIU G.Design of a magnetically suspended growheel and analysis of key technologies[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1478-1487(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201108012
|
[12] |
任元, 王卫杰, 刘强, 等. 一种磁悬浮控制敏感陀螺: ZL201510006597. 5[P]. 2017-04-28.
REN Y, WANG W J, LIU Q, et al. A kind of magnetically suspended control sensitive gyroscope: ZL201510006597. 5[P]. 2017-04-28(in Chinese).
|
[13] |
刘强, 武登云, 樊亚洪, 等. 双定子三自由度解耦洛伦兹力磁轴承: CN204572783U[P]. 2015-06-24.
LIU Q, WU D Y, FAN Y H, et al. Double stator three degrees of freedom decoupling Lorentz force magnetic bearing: CN204572783U[P]. 2015-06-24(in Chinese).
|
[14] |
刘强, 任元, 王卫杰, 等. 一种双永磁体内转子永磁偏置球面径向磁轴承:, CN204267528U[P]. 2015-02-25.
LIU Q, REN Y, WANG W J, et al. A permanent magnet bias spherical radial magnetic bearing with double permanent magnets: CN204267528U[P]. 2015-02-25(in Chinese).
|
[15] |
辛朝军. 磁悬浮控制敏感陀螺误差分析与补偿方法研究[D]. 北京: 航天工程大学, 2017: 15.
XIN C J. Error analysis and compensation method study of a magnetically suspended sensitive gyroscope[D]. Beijing: Space Engineering University, 2017: 15(in Chinese).
|
[16] |
许国锋, 蔡远文, 任元, 等.洛伦兹力磁轴承磁密均匀度设计与分析[J].北京航空航天大学学报, 2017, 43(3):559-566. http://bhxb.buaa.edu.cn/CN/abstract/abstract13947.shtml
XU G F, CAI Y W, REN Y, et al.Design and analysis on uniformity of magnetic flux density in Lorentz force-type magnetic bearing[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3):559-566(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13947.shtml
|