Volume 44 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
ZHANG Wei, XU Aiqiang, PING Dianfa, et al. Localized multi-kernel diagnosis model for avionics based on affinity propagation clustering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1693-1704. doi: 10.13700/j.bh.1001-5965.2017.0632(in Chinese)
Citation: ZHANG Wei, XU Aiqiang, PING Dianfa, et al. Localized multi-kernel diagnosis model for avionics based on affinity propagation clustering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1693-1704. doi: 10.13700/j.bh.1001-5965.2017.0632(in Chinese)

Localized multi-kernel diagnosis model for avionics based on affinity propagation clustering

doi: 10.13700/j.bh.1001-5965.2017.0632
Funds:

National Natural Science Foundation of China 61571454

Natural Science Foundation of Shandong Province, China ZR2016FQ03

More Information
  • Corresponding author: XU Aiqiang, E-mail:hjhyautotest@sina.com
  • Received Date: 16 Oct 2017
  • Accepted Date: 17 Nov 2017
  • Publish Date: 20 Aug 2018
  • In consideration of the low diagnosis accuracy for avionics functional module fault, a new offline localized clustering multi-kernel extreme learning machine (LCMKELM) diagnosis model is proposed in this paper by combining the capabilities of multi-resolution interpretation and local feature self-adaptive representation from localized multi-kernel learning (LMKL) with the characteristic of high-performance operation from extreme learning machine (ELM). In order to avoid overfitting issue, affinity propagation (AP) clustering is used to make full use of the underlying localities in the training data and effectively reduce the computational complexity. Considering that the updating of localized kernel weights in dual optimization form of kernel ELM (KELM)is a difficult quadratic nonconvex problem, gating function M1 and M2 are respectively constructed to approximate localized weights by analyzing the clustering characteristics in input space and feature space. The proposed method is applied to actual fault diagnosis task of rotary transformer excitation generating circuit, and the experimental results show that the proposed method has the lower false alarm rate and missing alarm rate in comparison with four state-of-the-art multi-kernel learning algorithms, and meanwhile the diagnosis accuracy is averagely increased by 3.80% when M1 gating model is used, and increased by 5.98% when M2 gating model is used. Moreover, compared with canonical LMKL algorithms, the proposed method obtains similar training time cost, but it has less testing time cost.

     

  • loading
  • [1]
    LUO H, WANG Y R, LIN H, et al.Module level fault diagnosis for analog circuits based on system identification and genetic algorithm[J].Measurement, 2012, 45(4):769-777. doi: 10.1016/j.measurement.2011.12.010
    [2]
    孙伟超, 李文海, 李文峰.融合粗糙集与D-S证据理论的航空装备故障诊断[J].北京航空航天大学学报, 2015, 41(10):1902-1909. http://bhxb.buaa.edu.cn/CN/abstract/abstract13502.shtml

    SUN W C, LI W H, LI W F.Avionic devices fault diagnosis based on fusion method of rough set and D-S theory[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10):1902-1909(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13502.shtml
    [3]
    KNVPPEL T, BLANKE M, ØSTERGAARD J.Fault diagnosis for electrical distribution systems using structural analysis[J].International Journal of Robust and Nonlinear Control, 2014, 24(8-9):1446-1465. doi: 10.1002/rnc.v24.8-9
    [4]
    JAMIL T, MOHAMMED I.Simulation of VICTOR algorithm for fault diagnosis of digital circuits[J].International Journal of Computer Theory and Engineering, 2015, 7(2):103-107. doi: 10.7763/IJCTE.2015.V7.939
    [5]
    DAI X W, GAO Z W.From model, signal to knowledge:A data-driven perspective of fault detection and diagnosis[J].IEEE Transactions on Industrial Informatics, 2013, 9(4):2226-2238. doi: 10.1109/TII.2013.2243743
    [6]
    蒋栋年, 李炜.基于自适应阈值的粒子滤波非线性系统故障诊断[J].北京航空航天大学学报, 2016, 42(10):2099-2106. http://bhxb.buaa.edu.cn/CN/abstract/abstract13736.shtml

    JIANG D N, LI W.Fault diagnosis of particle filter nonlinear systems based on adaptive threshold[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2099-2106(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13736.shtml
    [7]
    GAO Z W, CECATI C, DING S X.A survey of fault diagnosis and fault tolerant techniques-Part Ⅰ:Fault diagnosis with model-based and signal-based approaches[J].IEEE Transactions on Industrial Electronics, 2015, 62(6):3757-3767. doi: 10.1109/TIE.2015.2417501
    [8]
    SAHRI Z B, YUSOF R B.Support vector machine-based fault diagnosis of power transformer using k nearest-neighbor imputed DGA dataset[J].Journal of Computer and Communications, 2014, 2(9):22-31. doi: 10.4236/jcc.2014.29004
    [9]
    YIN G, ZHANG Y T, LI Z N, et al.Online fault diagnosis method based on incremental support vector data description and extreme learning machine with incremental output structure[J].Neurocomputing, 2014, 128:224-231. doi: 10.1016/j.neucom.2013.01.061
    [10]
    GÖNEN M, ALPAYDIN E.Multiple kernel learning algorithms[J].Journal of Machine Learning Research, 2011, 12:2211-2268. http://d.old.wanfangdata.com.cn/Periodical/zdhxb201410022
    [11]
    YE F M, ZHANG Z B, CHAKRABARTY K, et al.Board-level functional fault diagnosis using multikernel support vector machines and incremental learning[J].IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2014, 33(2):279-290. doi: 10.1109/TCAD.2013.2287184
    [12]
    LI Y X, REN C Q, BO J Y, et al.The application of GMKL algorithm to fault diagnosis of local area network[J].Journal of Networks, 2014, 9(3):747-753. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003637841
    [13]
    RAKOTOMAMONJY A, BACH F R, CANU S, et al.SimpleMKL[J].Journal of Machine Learning Research, 2008, 9:2491-2521. http://d.old.wanfangdata.com.cn/Periodical/gcsj201602012
    [14]
    HAN Y N, YANG K, MA Y L, et al.Localized multiple kernel learning via sample-wise alternating optimization[J].IEEE Transactions on Cybernetics, 2014, 44(1):137-147. doi: 10.1109/TCYB.2013.2248710
    [15]
    SONG Y, ZHENG Y T, TANG S, et al.Localized multiple kernel learning for realistic human action recognition in videos[J].IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(9):1193-1202. doi: 10.1109/TCSVT.2011.2130230
    [16]
    GÖNEN M, ALPAYDIN E.Localized algorithms for multiple kernel learning[J].Pattern Recognition, 2013, 46(3):795-807. doi: 10.1016/j.patcog.2012.09.002
    [17]
    WANG X M, HUANG Z X, DU Y J.Improving localized multiple kernel learning via radius-margin bound[J].Mathematical Problems in Engineering, 2017, 2017:4579214. doi: 10.1155/2017/4579214
    [18]
    HAN Y N, LIU G Z.Probability-confidence-kernel-based localized multiple kernel learning with Lp norm[J].IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics, 2012, 42(3):827-837. doi: 10.1109/TSMCB.2011.2179291
    [19]
    HAN Y N, YANG K D, LIU G Z.Lp norm localized multiple kernel learning via semi-definite programming[J].IEEE Signal Processing Letters, 2012, 19(10):688-691. doi: 10.1109/LSP.2012.2212431
    [20]
    FREY B J, DUECK D.Clustering by passing messages between data points[J].Science, 2007, 315(5814):972-976. doi: 10.1126/science.1136800
    [21]
    NAPOLEON D, BASKAR G, PAVALAKODI S.An efficient clustering technique for message passing between data points using affinity propagation[J].International Journal on Computer Science and Engineering, 2011, 3(1):8-13. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8f6b58a2aefdd722217c806bcb9766ca
    [22]
    SOKOLOVA M, LAPALME G.A systematic analysis of performance measures for classification tasks[J].Information Processing and Management, 2009, 45(4):427-437. doi: 10.1016/j.ipm.2009.03.002
    [23]
    PHOUNGPHOL P, ZHANG Y Q, ZHAO Y C.Robust multiclass classification for learning from imbalanced biomedical data[J].Tsinghua Science and Technology, 2012, 17(6):619-628. doi: 10.1109/TST.2012.6374363
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views(599) PDF downloads(524) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return