Volume 44 Issue 10
Oct.  2018
Turn off MathJax
Article Contents
LI Ming, FENG Hang, ZHANG Yanshunet al. RBF neural network tuning PID control based on UMAC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2063-2070. doi: 10.13700/j.bh.1001-5965.2017.0777(in Chinese)
Citation: LI Ming, FENG Hang, ZHANG Yanshunet al. RBF neural network tuning PID control based on UMAC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2063-2070. doi: 10.13700/j.bh.1001-5965.2017.0777(in Chinese)

RBF neural network tuning PID control based on UMAC

doi: 10.13700/j.bh.1001-5965.2017.0777
Funds:

National Natural Science Foundation of China 11202010

National Natural Science Foundation of China 61473019

More Information
  • Corresponding author: LI Ming, E-mail:liliyalm@buaa.edu.cn
  • Received Date: 19 Dec 2017
  • Accepted Date: 19 Jan 2018
  • Publish Date: 20 Oct 2018
  • The self-adaptability and robustness of traditional PID control and current fuzzy-PID control adopted by universal motion and automation controller (UMAC) were not strong, and the static-dynamic performance of servosystem controlled by them was not ideal. In this paper, RBF neural network was adopted to automatically adjust PID control parameters, which could strengthen the self-adaptability and robustness of servosystem and improve the controlling characteristics of servo system. This control algorithm was implemented by embedded PLC program of UMAC. The experimental results of step response and sinusoidal tracking response show that the rise time of servo motorposition step response by RBF neural network tuning PID control decreases from 0.164 s by traditional PID control and 0.118 s by fuzzy-PID control to 0.017 s, the peak time decreases from 0.196 s by traditional PID control and 0.131 s by fuzzy-PID control to 0.023 s, and the setting time decreases from 0.216 s by traditional PID control and 0.142 s by fuzzy-PID control to 0.025 s, which mean that the motor responds faster. Meantime, the dynamic following error peak value of motor position sinusoidal response by RBF neural network tuning PID control decreases from 188 counts by traditional PID control and 120 counts by fuzzy-PID control to 39 counts, and the error fluctuation issmall and steady, which mean that the dynamic tracking performance of the motor is significantly improved.

     

  • loading
  • [1]
    夏链, 俞晓慧, 韩江, 等.基于UMAC的工业机器人运动控制系统设计[J].合肥工业大学学报(自然科学版), 2015, 38(8):1009-1012. doi: 10.3969/j.issn.1003-5060.2015.08.001

    XIA L, YU X H, HAN J, et al.Design of motion control system of industrial robot based on UMAC[J].Journal of Hefei University of Technology(Natural Science), 2015, 38(8):1009-1012(in Chinese). doi: 10.3969/j.issn.1003-5060.2015.08.001
    [2]
    SPIESER A, IVANOV A.Design of an electrochemical micromachining machine[J].International Journal of Advanced Manufacturing Technology, 2015, 78(5-8):737-752. doi: 10.1007/s00170-014-6332-3
    [3]
    刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社, 2011:301-319.

    LIU J K.MATLAB simulmion of advanced PID control[M].Beijing:Electronic Industry Press, 2011:301-319(in Chinese).
    [4]
    赵凤姣, 厉虹.PID控制器改进方法研究[J].控制工程, 2015, 22(3):425-431. http://d.old.wanfangdata.com.cn/Periodical/jczdh201503011

    ZHAO F J, LI H.Research on improved methods of PID controller[J].Control Engineering of China, 2015, 22(3):425-431(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jczdh201503011
    [5]
    廖洪波, 范世珣, 黑墨, 等.光电稳定平台伺服系统动力学建模与参数辨识[J].光学精密工程, 2015, 23(2):477-484. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201502022

    LIAO H B, FAN S X, HEI M, et al.Modeling and parameter identification for electro-optical stabilized platform servo systems[J].Optics and Precision Engineering, 2015, 23(2):477-484(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201502022
    [6]
    HUANG W L, KUO F C, CHOU S C, et al.High-performance and high-precision servo control of a single-deck dual-axis PMLSM stage[J].International Journal of Advanced Manufacturing Technology, 2017, 90(1-4):865-874. doi: 10.1007/s00170-016-9355-0
    [7]
    王克选, 李新国.基于PMAC的模糊自整定PID算法设计[J].计算机仿真, 2013, 30(9):331-334. doi: 10.3969/j.issn.1006-9348.2013.09.077

    WANG K X, LI X G.Design of fuzzy self-regulation PID algorithm based on PMAC[J].Computer Simulation, 2013, 30(9):331-334(in Chinese). doi: 10.3969/j.issn.1006-9348.2013.09.077
    [8]
    白晶, 于喜红, 秦现生.基于PMAC的码垛机器人模糊PID算法研究[J].机械设计与制造工程, 2016, 45(3):46-49. doi: 10.3969/j.issn.2095-509X.2016.03.010

    BAI J, YU X H, QIN X S.Study on fuzzy PID algorithm for palletizing robot based on PMAC[J].Machine Design and Manufacturing Engineering, 2016, 45(3):46-49(in Chinese). doi: 10.3969/j.issn.2095-509X.2016.03.010
    [9]
    TIAN C X, LI X W, HU Z.The study of fuzzy self-regulation PID algorithm based on PMAC[J].Machinery & Electronics, 2010, 57(10):60-63.
    [10]
    SONG Y, LIU Y, ZHU H.A PMSM speed controller based on RBF neural network and single neuron PID[J].Electronics World, 2017, 38(2):122-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzsj201702061
    [11]
    江维, 吴功平, 曹琪, 等.输电线路带电作业机器人机械手RBF神经网络控制[J].东北大学学报(自然科学版), 2017, 38(10):1388-1393. doi: 10.12068/j.issn.1005-3026.2017.10.005

    JIANG W, WU G P, CAO Q, et al.RBF neural network control of live operation robot manipulator for high voltage transmission line[J].Journal of Northeastern University(Natural Science), 2017, 38(10):1388-1393(in Chinese). doi: 10.12068/j.issn.1005-3026.2017.10.005
    [12]
    周佳, 卢少武, 周凤星.伺服位置控制参数的RBF神经网络自整定研究[J].组合机床与自动化加工技术, 2016(3):75-77. http://d.old.wanfangdata.com.cn/Periodical/zhjc201603021

    ZHOU J, LU S W, ZHOU F X.Study on position control parameters auto-tuning of servo system based on RBF neural network[J].Modular Machine Tool & Automatic Manufacturing Technique, 2016(3):75-77(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zhjc201603021
    [13]
    舒志兵, 周玮, 李运华.交流伺服运动控制系统[M].北京:清华大学出版社, 2006:66-82.

    SHU Z B, ZHOU W, LI Y H.AC servo motion control system[M].Beijing:Tsinghua University Press, 2006:66-82(in Chinese).
    [14]
    ABU-RUB H, IQBAL A, GUZINSKI J.High performance control of AC drives with MATLAB/Simulink models[M].New York:Wiley, 2012.
    [15]
    KUNG Y S, NGUYEN V Q, HUANG C C, et al.Simulink/ModelSim co-simulation of sensorless PMSM speed controller[C]//Industrial Electronics and Applications.Piscataway, NJ: IEEE Press, 2012: 1405-1410.
    [16]
    DARKEN C, MOODY J.Fast adaptive k-means clustering: Some empirical results[C]//IJCNN International Joint Conference on Neural Networks.Piscataway, NJ: IEEE Press, 1990: 233-238.
    [17]
    李文鹏.基于UMAC的超精密机床数控系统设计及参数自整定研究[D].哈尔滨: 哈尔滨工业大学, 2016: 45-57.

    LI W P.Design of ultra-precision machine tool numerical control system and auto-tuning for parameter based on UMAC[D].Harbin: Harbin Institute of Technology, 2016: 45-57(in Chinese).
    [18]
    吴晓明, 马立廷, 郑协, 等.改进的RBF神经网络PID算法在电液伺服系统中应用[J].机床与液压, 2015, 43(11):63-66. doi: 10.3969/j.issn.1001-3881.2015.11.018

    WU X M, MA L T, ZHENG X, et al.Improved RBF neural network PID control strategy used in electro-hydraulic servo system[J].Machine Tool & Hydraulics, 2015, 43(11):63-66(in Chinese). doi: 10.3969/j.issn.1001-3881.2015.11.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(675) PDF downloads(456) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return