Volume 44 Issue 10
Oct.  2018
Turn off MathJax
Article Contents
RUAN Shiting, ZHANG Jimin, CAO Jianguang, et al. Numerical simulation of melting process of phase change energy storage unit under microgravity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2224-2231. doi: 10.13700/j.bh.1001-5965.2017.0791(in Chinese)
Citation: RUAN Shiting, ZHANG Jimin, CAO Jianguang, et al. Numerical simulation of melting process of phase change energy storage unit under microgravity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2224-2231. doi: 10.13700/j.bh.1001-5965.2017.0791(in Chinese)

Numerical simulation of melting process of phase change energy storage unit under microgravity

doi: 10.13700/j.bh.1001-5965.2017.0791
Funds:

National Natural Science Foundation of China 51406122

More Information
  • Corresponding author: CAO Jianguang, E-mail:cao_jianguang@163.com
  • Received Date: 25 Dec 2017
  • Accepted Date: 16 Mar 2018
  • Publish Date: 20 Oct 2018
  • In order to explore the melting process of phase change materials in the phase change energy storage unit with fins in microgravity environment, the heat transfer and flow characteristics of phase change materials in microgravity environment are investigated by numerical simulation. The accuracy of the numerical simulation was verified by comparing the numerical simulation results and experimental results in gravity environment. The numerical simulation results under both gravity and microgravity effects were compared to reveal the characteristics of the phase change material melt process in microgravity environment. The results show that when the phase change energy storage unit is in microgravity environment, the melting rate of the phase change material obviously decreases, and the heat is mainly transferred by the heat conduction. The expansion of the melted phase change material extends from the top to the space, and the local low temperature zone is in the upper-middle of the phase change energy storage unit.

     

  • loading
  • [1]
    闵桂荣, 郭舜.航天器热控制[M].北京:科学出版社, 1998:320-357.

    MIN G R, GUO S.Thermal control technology of spacecraft[M]. Beijing:Science Press, 1998:320-357(in Chinese).
    [2]
    王磊, 菅鲁京.相变材料在航天器上的应用[J].航天器环境工程, 2013, 30(5):522-528. doi: 10.3969/j.issn.1673-1379.2013.05.013

    WANG L, JIAN L J.Application of phase change materials in spacecraft[J]. Spacecraft Environment Engineering, 2013, 30(5):522-528(in Chinese). doi: 10.3969/j.issn.1673-1379.2013.05.013
    [3]
    侯增祺, 胡金刚.航天器热控制技术原理及其应用[M].北京:中国科学技术出版社, 2007:177-188.

    HOU Z Q, HU J G.Principle and application of thermal control technology of spacecraft[M]. Beijing:China Science and Technology Press, 2007:177-188(in Chinese).
    [4]
    LEIMKUEHLER T O, STEPHAN R A, HANSEN S.Development, testing, and failure mechanisms of a replicative ice phase change material heat exchanger[C]//40th International Conference on Enviromental Systems.Reston: AIAA, 2010: 1-14.
    [5]
    LEE S A, LEIMKUEHLER T O, STEPHAN R A, et al.Thermal vacuum test of ice as a phase change material integrated with a radiator[C]//40th International Conference on Enviromental Systems.Reston: AIAA, 2010: 1-10.
    [6]
    YE W B, ZHU D S, WANG N.Numerical simulation on phase-change thermal storage/release in a plate-fin unit[J]. Applied Thermal Engineering, 2011, 31(1):3871-3884.
    [7]
    YE W B, ZHU D S, WANG N.Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions[J]. Applied Thermal Engineering, 2012, 42(3):49-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0226609061
    [8]
    ISMAIL K A R, ALVES C L F, MODESTO M S.Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder[J]. Applied Thermal Engineering, 2001, 21(1):53-77. doi: 10.1016/S1359-4311(00)00002-8
    [9]
    ABDULJALIL A A, MAT S, SOPIAN K, et al.Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins[J]. International Journal of Heat and Mass Transfer, 2013, 61(1):684-695. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229860515
    [10]
    ASSIS E, KATSMAN L, ZISKIND G, et al.Numerical and experimental study of melting in a spherical shell[J]. International Journal of Heat and Mass Transfer, 2007, 50(9-10):1790-1804. doi: 10.1016/j.ijheatmasstransfer.2006.10.007
    [11]
    ASSIS E, ZISKIND G, LETAN R.Numerical and experimental study of solidification in a spherical shell[J]. Journal of Heat Transfer, 2009, 131(2):273-289. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ028171163
    [12]
    HUMPHRIES W R, GRIGGS E I.A design handbook for phase change thermal control and energy storage devices[M]. New York:NASA Scientific and Technical Information Office, 1977:155-160.
    [13]
    BERTRAND O, BINET B, COMBEAU H, et al.Melting driven by natural convection.A comparison exercise:First results[J]. International Journal of Thermal Science, 1999, 38(1):5-26. doi: 10.1016/S0035-3159(99)80013-0
    [14]
    BRENT A D, VOLLER V R, REID K J.Enthalpy-porosity technique for modeling convection-diffusion phase change:Application to the melting of a pure metal[J]. Numerical Heat Transfer, 1988, 13(3):297-318. doi: 10.1080/10407788808913615
    [15]
    SHATIKIAN V, ZISKIND G, LETAN R.Numerical investigation of a PCM-based heat sink with internal fins[J]. International Journal of Heat and Mass Transfer, 2005, 48(17):3689-3706. doi: 10.1016/j.ijheatmasstransfer.2004.10.042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(620) PDF downloads(376) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return