Volume 44 Issue 10
Oct.  2018
Turn off MathJax
Article Contents
ZHANG Ying, LU Min, LI Peisheng, et al. Numerical simulation of drop capturing capabilities on heterogeneous walls[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2021-2027. doi: 10.13700/j.bh.1001-5965.2017.0799(in Chinese)
Citation: ZHANG Ying, LU Min, LI Peisheng, et al. Numerical simulation of drop capturing capabilities on heterogeneous walls[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2021-2027. doi: 10.13700/j.bh.1001-5965.2017.0799(in Chinese)

Numerical simulation of drop capturing capabilities on heterogeneous walls

doi: 10.13700/j.bh.1001-5965.2017.0799
Funds:

National Natural Science Foundation of China 11562011

National Natural Science Foundation of China 51566012

Innovation Fund Designated for Graduate Students of Jiangxi Province YC2018-S059

More Information
  • Corresponding author: LI Peisheng, E-mail:ncudns1995z@163.com
  • Received Date: 25 Dec 2017
  • Accepted Date: 23 Mar 2018
  • Publish Date: 20 Oct 2018
  • In order to study the drop capturing capabilities of heterogeneous walls, a numerical method is developed by integrating the generalized Navier boundary condition into front tracking method (FTM) to establish the contact angle model. The numerical simulation of the movement of drops on the heterogeneous wall with non-uniform wetting was carried out. The drop slides on the inclined wall from the uniform wetting part to the non-uniform wetting part. The movement of the drop in the non-uniform wetting area is studied by changing the Bo number, the Oh number and the non-uniform wetting degree. the results show that when the Bo number becomes lager, the movement of drop will be less affected by the resistance of the wall and the velocity of the drop will become larger which makes it difficult to be captured; the greater the Oh number is, the less effect of wall surface resistance on the drop is, and the more difficult it is to capture the drop; when the non-uniform wetting degree becomes lager, the resistance of the heterogeneous wall to drop will be greater, and the drop will be captured more easily.

     

  • loading
  • [1]
    MANNETJE D T, GHOSH S, LAGRAAUW R, et al.Trapping of drops by wetting defects[J].Nature Communications, 2014, 5(4):3559. http://cn.bing.com/academic/profile?id=7f47e5b1921d77ebe7d0fc8319cb16d2&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    PRIEST C, SEDEV R, RALSTON J.A quantitative experimental study of wetting hysteresis on discrete and continuous chemical heterogeneities[J].Colloid & Polymer Science, 2013, 291(2):271-277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0228578262
    [3]
    SBRAGAGLIA M, BIFERALE L, AMATI G, et al.Sliding drops across alternating hydrophobic and hydrophilic stripes[J].Physical Review E, 2014, 89(1):12406. doi: 10.1103/PhysRevE.89.012406
    [4]
    DESIMONE A, GRUNEWALD N, OTTO F.A new model for contact angle hysteresis[J].Networks & Heterogeneous Media, 2017, 2(2):211-225. http://cn.bing.com/academic/profile?id=a439181e7fca3aa509724a6ae8e5fbea&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    CONINCK J D, DUNLOP F, HUILLET T.Contact angles of a drop pinned on an incline[J].Physical Review E, 2017, 95(5):052805. doi: 10.1103/PhysRevE.95.052805
    [6]
    BUSSMANN M, CHANDRA S, MOSTAGHIMI J.Modeling the splash of a droplet impacting a solid surface[J].Physics of Fluids, 2000, 12(12):3121-3132. doi: 10.1063/1.1321258
    [7]
    FUKAI J, SHⅡBA Y, YAMAMOTO T, et al.Wetting effects on the spreading of a liquid droplet colliding with a flat surface:Experiment and modeling[J].Physics of Fluids, 1995, 7(2):236-247. doi: 10.1063/1.868622
    [8]
    SPELT P D M.A level-set approach for simulations of flows with multiple moving contact lines with hysteresis[J].Journal of Computational Physics, 2005, 207(2):389-404. doi: 10.1016/j.jcp.2005.01.016
    [9]
    KHATAVKAR V V, ANDERSON P D, DUINEVELD P C, et al.Diffuse-interface modelling of droplet impact[J].Journal of Fluid Mechanics, 2007, 581:97-127. doi: 10.1017/S002211200700554X
    [10]
    UNVERDI S O, TRYGGVASON G.A front-tracking method for viscous, incompressible, multi-fluid flows[J].Journal of Computational Physics, 1992, 100(1):25-37. doi: 10.1016/0021-9991(92)90307-K
    [11]
    YAMAMOTO Y, ITO T, WAKIMOTO T, et al.Numerical simulations of spontaneous capillary rises with very low capillary numbers using a front-tracking method combined with generalized Navier boundary condition[J].International Journal of Multiphase Flow, 2013, 51(3):22-32. http://cn.bing.com/academic/profile?id=076960068fa3c43c40ffa725757b550e&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    YAMAMOTO Y, TOKIEDA K, WAKIMOTO T.Modeling of the dynamic wetting behavior in a capillary tube considering the macroscopic-microscopic contact angle relation and generalized Navier boundary condition[J].International Journal of Multiphase Flow, 2014, 59:106-112. doi: 10.1016/j.ijmultiphaseflow.2013.10.018
    [13]
    MURADOGLU M, TASOGLU S.A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls[J].Computers & Fluids, 2010, 39(4):615-625. http://cn.bing.com/academic/profile?id=e5611b078021cf5c63b9ebaaf95ad813&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    HUANG H, LIANG D, WETTON B.Computation of a moving drop/bubble on a solid surface using a front-tracking method[J].Communications in Mathematical Sciences, 2004, 2(4):535-552. doi: 10.4310/CMS.2004.v2.n4.a1
    [15]
    QUIAN T, WANG X P, SHENG P.Generalized Navier boundary condition for the moving contact line[J].Communications in Mathematical Sciences, 2003, 1(2):333-341. doi: 10.4310/CMS.2003.v1.n2.a7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(465) PDF downloads(450) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return