Volume 44 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
SUN Yun, WANG Ying, LI Chaoet al. Complex equipment risk conduction analysis based on UR-MTPGERT model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1587-1595. doi: 10.13700/j.bh.1001-5965.2017.0800(in Chinese)
Citation: SUN Yun, WANG Ying, LI Chaoet al. Complex equipment risk conduction analysis based on UR-MTPGERT model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1587-1595. doi: 10.13700/j.bh.1001-5965.2017.0800(in Chinese)

Complex equipment risk conduction analysis based on UR-MTPGERT model

doi: 10.13700/j.bh.1001-5965.2017.0800
Funds:

National Natural Science Foundation of China 71601183

More Information
  • Corresponding author: WANG Ying, E-mail: yingwangkgd@163.com
  • Received Date: 25 Dec 2017
  • Accepted Date: 16 Mar 2018
  • Publish Date: 20 Aug 2018
  • Aimed at the problem of unclear description of the conduction relationship of complex equipment risks, a risk conduction uncertain random multi-transfer parameter graph evaluation and review technique (UR-MTPGERT) model is constructed. First, based on the opportunity theory, the moment function of uncertain random variables is defined, and then a multi-transter parameter UR-MTPGERT network is constructed. Second, to describe the micro-risk information of complex equipment systems, analytic parameters are introduced in the model including the degree of risk, the importance of risk primitives and the degree of relevance of risk paths. Then, when solving the moment function, the Delphi method is used to process the expert empirical data to obtain the empirical uncertainty distribution, and the maximum entropy model is used to process the random data. The probability density function is obtained. The matrix analysis technique is introduced to solve the problem of difficult network topology analysis. On this basis, the network parameters are calculated. Finally, the safety analysis of a certain type of aircraft is carried out. The results show that the model can clearly reflect the relationship between risk elements and provide reference for the risk analysis, prediction and safety control of complex equipment.

     

  • loading
  • [1]
    闻敬谦, 李青.基于工作流的航空装备综合维修保障管理[J].计算机集成制造系统, 2010, 16(10):2196-2205. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201010025

    WEN J Q, LI Q.A comprehensive maintenance support management of aviation equipment based on workflow[J].Computer Integrated Manufacturing Systems, 2010, 16(10):2196-2205(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201010025
    [2]
    查尔斯·佩罗.高风险技术与"正常事故"[M].北京:科学技术文献出版社, 1988.

    PERROW C.High-risk technology and "normal" accidents[M].Beijing:Science and Technology Literature Press, 1988(in Chinese).
    [3]
    郭鹏.航空武器装备全寿命周期风险评估方法比较与改进[J].航空学报, 2003, 24(5):427-430. doi: 10.3321/j.issn:1000-6893.2003.05.010

    GUO P.Comparison and improvement of life-cycle risk assessment methods for aviation weapon equipment[J].Acta Aeronautica et Astronautica Sinica, 2003, 24(5):427-430(in Chinese). doi: 10.3321/j.issn:1000-6893.2003.05.010
    [4]
    LI C, WANG K.The risk element transmission theory research of multi-objective risk-time-cost trade-off[J].Computers & Mathematics with Applications, 2009, 57(11-12):1792-1799.
    [5]
    LI X, ZHAO T, RONG M. A multi-factor coupling event chain model based on Petri nets[C]//International Conference on Reliability, Maintainability and Safety. Piscataway, NJ: IEEE Press, 2009: 466-469.
    [6]
    李晓磊, 田瑾, 赵廷弟.改进的区域安全性分析方法[J].航空学报, 2008, 29(3):622-626. doi: 10.3321/j.issn:1000-6893.2008.03.014

    LI X L, TIAN J, ZHAO T D.An improved method of regional safety analysis[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(3):622-626(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.014
    [7]
    QU J F, LI G, ZHANG S L.Study on system coupling effects of ecological and economic in mining subsidence reclamation area[J].Advanced Materials Research, 2013, 610-613:1315-1320. https://www.scientific.net/amr.610-613.1315.pdf
    [8]
    LUO P, HU Y.System risk evolution analysis and risk critical event identification based on event sequence diagram[J].Reliability Engineering & System Safety, 2013, 114(1):36-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229643604
    [9]
    MIGUEL A, BEDIA M G, BARANDIARAN X E.Extended neural metastability in an embodied model of sensorimotor coupling[J].Frontiers in Systems Neuroscience, 2016, 10(117):76. doi: 10.3389/fnsys.2016.00076/full
    [10]
    PRITSKER A.Graphical evaluation and review technique[M].Berlin:Springer, 2001.
    [11]
    李超, 王瑛, 陈超, 等.基于QHSME的装备危险耦合传导GERT分析[J].系统工程与电子技术, 2014, 36(11):2219-2225. doi: 10.3969/j.issn.1001-506X.2014.11.17

    LI C, WANG Y, CHEN C, et al.GERT analysis of coupled conduction for materiel hazard based on QHSME[J].Systems Engineering & Electronics, 2014, 36(11):2219-2225(in Chinese). doi: 10.3969/j.issn.1001-506X.2014.11.17
    [12]
    LIU B.Uncertainty distribution and independence of uncertain processes[J].Fuzzy Optimization & Decision Making, 2014, 13(3):259-271. https://www.researchgate.net/publication/264313725_Uncertainty_distribution_and_independence_of_uncertain_processes
    [13]
    LIU B, CHEN X.Uncertain multiobjective programming and uncertain goal programming[J].Journal of Uncertainty Analysis & Applications, 2015, 3(1):1-8. http://d.old.wanfangdata.com.cn/Periodical/ycxxb200502007
    [14]
    LIU Y, HA M.Expected value of function of uncertain variables[J].Journal of Uncertain Systems, 2010, 3(4):181-186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003097748
    [15]
    LIU B, YAO K.Uncertain multilevel programming:Algorithm and applications[J].Computers & Industrial Engineering, 2015, 89:235-240. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234742418/
    [16]
    PHILLIPS S J, ANDERSON R P, SCHAPIRE R E.Maximum entropy modeling of species geographic distributions[J].Ecological Modelling, 2006, 190(3-4):231-259. doi: 10.1016/j.ecolmodel.2005.03.026
    [17]
    YEO G, BURGE C B.Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals[J].Journal of Computational Biology:A Journal of Computational Molecular Cell Biology, 2004, 11(2-3):377-394. doi: 10.1089/1066527041410418
    [18]
    陶良彦, 刘思峰, 方志耕, 等.GERT网络的矩阵式表达及求解模型[J].系统工程与电子技术, 2017, 39(6):1292-1297. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201706017

    TAO L Y, LIU S F, FANG Z G, et al.Matrix expression and solution model of GERT network[J].Systems Engineering and Electronics, 2017, 39(6):1292-1297(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201706017
    [19]
    罗涛.信号与系统分析的流图矩阵法[J].通信学报, 1993, 14(6):73-79. http://d.old.wanfangdata.com.cn/Conference/316581

    LUO T.Analysis of signals and systems by flow graph matrix method[J].Journal of China Institute of Communications, 1993, 14(6):73-79(in Chinese). http://d.old.wanfangdata.com.cn/Conference/316581
    [20]
    刘璐, 单梁, 戴跃伟, 等.非线性动态自适应旋转角的量子菌群算法[J].控制与决策, 2017, 32(12):2137-2144. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201712003

    LIU L, SHAN L, DAI Y W, et al.Quantum germ algorithm for nonlinear dynamic adaptive rotation angle[J].Control & Decision, 2017, 32(12):2137-2144(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzyjc201712003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(683) PDF downloads(474) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return