Citation: | DONG Yang, WANG Chunjie, WU Hongyu, et al. Soft landing stability of lander in mode of shutdown at touchdown[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 317-324. doi: 10.13700/j.bh.1001-5965.2018.0318(in Chinese) |
A lander in the soft landing mode of shutdown at touchdown is taken as the research object, and the dynamic simulation model of its soft landing process is established. Based on the simulation model, the parameters of the worst landing conditions are obtained by combining optimization method and multi-island genetic algorithm (MIGA). The radial basis function (RBF) neural network is used to establish a surrogate model which reflects the mapping relationship between the lander's velocity parameter and the value of stability indicator. The sample points are obtained by discretizing the velocity parameters of the lander, and the soft landing stability performance of each sample point are calculated by using the neural network model. Based on the calculation results, the contour and the three-dimensional velocity stability boundary of each soft landing stability indicator are given, and then a comprehensive stability boundary of lander velocity is obtained. The analysis results can intuitively determine the range of velocity for safe landing, which provides reference for the rational control of lander velocity.
[1] |
杨建中, 曾福明, 满剑锋, 等.嫦娥三号着陆器着陆缓冲系统设计与验证[J].中国科学:技术科学, 2014, 44(5):440-449. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201405002.htm
YANG J Z, ZENG F M, MAN J F, et al.Design and verification of the landing impact attenuation system for Chang'E-3 lander[J].Scientia Sinica Techologica, 2014, 44(5):440-449(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201405002.htm
|
[2] |
CHEN J B, NIE H, WAN J L, et al.Investigation on landing impact dynamic and low-gravity experiments for deep space lander[J].Science China (Physics, Mechanics & Astronomy), 2014, 57(10):1987-1997. doi: 10.1007/s11433-014-5423-3
|
[3] |
孙泽洲, 张熇, 贾阳, 等.嫦娥三号探测器地面验证技术[J].中国科学:技术科学, 2014, 44(4):369-376. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201404005.htm
SUN Z Z, ZHANG H, JIA Y, et al.Ground validation technologies for Chang'E-3 lunar spacecraft[J].Scientia Sinica Techologica, 2014, 44(4):369-376(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201404005.htm
|
[4] |
逯运通, 宋顺广, 王春洁, 等.基于刚柔耦合模型的月球着陆器动力学分析[J].北京航空航天大学学报, 2010, 36(11):1348-1352.
LU Y T, SONG S G, WANG C J, et al.Dynamic analysis for lunar lander based on rigid-flexible coupled model[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11):1348-1352(in Chinese).
|
[5] |
MAEDA T, OTSUKI M, HASHIMOYO T, et al.Attitude stabilization for lunar and planetary lander with variable damper[J].Journal of Guidance, Control, and Dynamics, 2016, 39(8):1790-1804. doi: 10.2514/1.G000325
|
[6] |
曾福明, 杨建中, 朱汪, 等.月球着陆器着陆缓冲性能研究[J].航天器工程, 2010, 19(5):43-49. doi: 10.3969/j.issn.1673-8748.2010.05.008
ZENG F M, YANG J Z, ZHU W, et al.Research on landing impact attenuation performance of lunar lander[J].Spacecraft Engineering, 2010, 19(5):43-49(in Chinese). doi: 10.3969/j.issn.1673-8748.2010.05.008
|
[7] |
岳帅, 聂宏, 张明, 等.临近空间载人舱着陆动力学及影响因素分析[J].宇航学报, 2018, 39(3):264-274.
YUE S, NIE H, ZHANG M, et al.Analysis on landing dynamics and influence factors of near space manned capsule[J].Journal of Astronautics, 2018, 39(3):264-274(in Chinese).
|
[8] |
LAVENDER R E.Monte Carlo approach to touchdown dynamics for soft lunar landing: NASA TN D-3117[R].Washington, D.C.: NASA, 1965.
|
[9] |
ROGERS W F.Apollo experience report: Lunar module landing gear subsystem: NASA TN D-6850[R].Washington, D.C.: NASA, 1972.
|
[10] |
朱汪, 杨建中.月球着陆器软着陆机构着陆稳定性仿真分析[J].宇航学报, 2009, 30(5):1792-1796. doi: 10.3873/j.issn.1000-1328.2009.05.008
ZHU W, YANG J Z.Touch down stability simulation of landing gear system for lunar lander[J].Journal of Astronautics, 2009, 30(5):1792-1796(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.05.008
|
[11] |
LIU Y, SONG S, LI M, et al.Landing stability analysis for lunar landers using computer simulation experiments[J].International Journal of Advanced Robotic Systems, 2017, 14(6):1-15.
|
[12] |
吴宏宇, 王春洁, 丁宗茂, 等.两种着陆模式下的着陆器缓冲机构构型优化[J].宇航学报, 2017, 38(10):1032-1040.
WU H Y, WANG C J, DING Z M, et al.Configuration optimization of landing gear under two kinds of landing modes[J].Journal of Astronautics, 2017, 38(10):1032-1040(in Chinese).
|
[13] |
WU H, WANG C, DING J, et al.Dynamics simulation analysis for novel lander based on two kinds of landing mode[C]//International Conference on Measuring Technology and Mechatronics Automation.Piscataway, NJ: IEEE Press, 2017: 8-12.
|
[14] |
丁宗茂, 王春洁, 吴宏宇, 等.探测器触地关机软着陆稳定性分析[J].北京航空航天大学学报, 2018, 44(3):614-620.
DING Z M, WANG C J, WU H Y, et al.Stability analysis of explorer in soft landing mode of engine shutdown at touchdown[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3):614-620(in Chinese).
|
[15] |
陈立平.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社, 2005:25-30.
CHEN L P.Mechanical system dynamics analysis and ADAMS application tutorial[M].Beijing:Tsinghua University Press, 2005:25-30(in Chinese).
|
[16] |
张熇, 蔡国飙, 许映乔, 等.嫦娥三号着陆器软着陆过程中羽流仿真分析及试验研究[J].中国科学:技术科学, 2014, 44(4):344-352. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201404002.htm
ZHANG H, CAI G B, XU Y Q, et al.Simulation and experimental study of the plume during the Chang'E-3 lunar landing[J].Scientia Sinica Techologica, 2014, 44(4):344-352(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201404002.htm
|
[17] |
张洪华, 关轶峰, 黄翔宇, 等.嫦娥三号着陆器动力下降的制导导航与控制[J].中国科学:技术科学, 2014, 44(4):377-384.
ZHANG H H, GUAN Y F, HUANG X Y, et al.Guidance navigation and control for Chang'E-3 powered descent[J].Scientia Sinica Techologica, 2014, 44(4):377-384(in Chinese).
|
[18] |
CAROZZA M, RAMPONE S.Function approximation from noisy data by an incremental RBF network[J].Pattern Recognition, 1999, 32(12):2081-2083. doi: 10.1016/S0031-3203(99)00101-6
|
[1] | WANG H,LI X K,ZHANG H L,et al. Multi-UAV stereoscopic inclusion control based on dynamic scale observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):655-667 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0026. |
[2] | ZHEN Chong, FENG Xinyu. Carrier-based aircraft direct lift control based on sliding mode observer and non-linear dynamic inversion technology[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0373 |
[3] | CHEN Qing-yang, XIN Hong-bo, LU Ya-fei, WANG Peng, WANG Yu-jie, ZHENG Jun-fei. Ground Taxiing Lateral Deviation Correction Control for High Subsonic UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0635 |
[4] | YU H F,GUO Y Q,WANG J M. Mode transition control of over-under TBCC under variable Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3456-3462 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0827. |
[5] | LI X R,ZHANG X Y,LI Z,et al. FC-AE-1553 dynamic bandwidth scheduling mechanism for multi network controllers[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2963-2974 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0755. |
[6] | YI Shaopeng, DONG Wei, WANG Weilin, WANG Chunyan, YI Aiqing, WANG Jianan. Neural Network Controller-Based Safe Landing Algorithm for UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0402 |
[7] | SUN Bing, CHEN Wei. Finite time robust control of morphing aircraft based on time-varying gain observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0704 |
[8] | GE Wenqing, LI Detong, SONG Yadong, TAN Cao, LI Bo. Displacement sensorlesscontrol of electromagnetic linear actuator based on improved sliding mode observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0291 |
[9] | LIN Junting, CHEN Xinzhou. Sliding mode control of magnetic levitation ball systems based on high-gain disturbance observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0518 |
[10] | SHE W Q,LIU Y B,CHEN B Y. Altitude control strategy for high-aspect-ratio wings with active morphing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1746-1752 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0612. |
[11] | CAI H,SHI P. Attitude control method for flexible spacecraft based on LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3921-3929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0880. |
[12] | TAN Cao, YU Peng, LI Bo, LU Jia-yu, REN Yun-yun. Pressure Cascade Control of Brake-by-wire Unit Based on Direct Drive Pump-Valve Cooperative[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0216 |
[13] | MA L Q,SUN X Z. Design of flight control system for BWB civil aircraft considering safety[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):804-814 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0341. |
[14] | LEI Chao-hui, YANG Chao, SONG Chen. Optimization design of active aeroelastic wing with variable camber[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0623 |
[15] | CHEN Y F,GUO Y Q,MAO H T. Design of time-delay robust cascade PI controller for turboshaft engine[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):597-605 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0273. |
[16] | FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0734. |
[17] | WANG L N,LIU Z B,YUAN J B,et al. Adaptive fault diagnosis and estimation for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2395-2405 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0656. |
[18] | ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416. |
[19] | XIA L C,WANG S Y,ZHANG J,et al. Bi-bandwidth extended state observer based disturbance rejection control method and its application on UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1201-1208 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0411. |
[20] | PAN Chang-zhong, HE Guang, LI Zhi-jing, ZHOU Lan, XIONG Pei-yin. Adaptive Filtered Control for Uncertain Electro-hydraulic Servo Systems with Time-varying Output Constraints[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022-0497 |