Volume 44 Issue 12
Dec.  2018
Turn off MathJax
Article Contents
MU Zhongcheng, YE Dong, WU Shufanet al. Technology of electromagnetic docking mechanism using nanosatellites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2644-2650. doi: 10.13700/j.bh.1001-5965.2018.0346(in Chinese)
Citation: MU Zhongcheng, YE Dong, WU Shufanet al. Technology of electromagnetic docking mechanism using nanosatellites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2644-2650. doi: 10.13700/j.bh.1001-5965.2018.0346(in Chinese)

Technology of electromagnetic docking mechanism using nanosatellites

doi: 10.13700/j.bh.1001-5965.2018.0346
Funds:

Shanghai Sailing Program SHKW15YF01

CAS National Defense Science and Technology Innovation Fund of CAS Y423931262

More Information
  • Corresponding author: WU Shufan, E-mail: shufan.wu@sjtu.edu.cn
  • Received Date: 11 Jun 2018
  • Accepted Date: 03 Sep 2018
  • Publish Date: 20 Dec 2018
  • On-orbit service is one of the main developing trends of future satellites, where on-orbit software reconfiguration and hardware assembly are the key technologies. In this paper, combined with the electromagnetic technology and "pen cap" docking mechanism, an autonomous rendezvous and docking control mechanism with 1U dimension was designed to be used in the cubesat field. And based on the designed electromagnetic docking mechanism, the comparison between precise model and distant field model of electromagnetic force and moment was conducted, and the application range for distant field model with docking distance more than 0.1 m was gained. Using simulation analysis method, it is found that the ratio of without iron core and with iron core is in the range of 10-8~10-4, which provides reference for distant field model correction.

     

  • loading
  • [1]
    WOELLERT K, EHRENFREUND P, RICCO A J, et al.Cubesat:Cost-effective science and technology platforms for emerging and developing nations[J].Advances in Space Research, 2011, 47(4):663-684. doi: 10.1016/j.asr.2010.10.009
    [2]
    SELVA D, KREJCI D.A survey and assessment of the capabilities of Cubesats for earth observation[J].Acta Astronautica, 2012, 74(27):50-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea7d57a62b2ed444e063e6fcc4152a23
    [3]
    SHIMMIN R, SCHALKWYCK J, PEREZ A D, et al.Small spacecraft state of the art report 2015[C]//NASA Technical Memorandum.Washington, D.C: NASA, 2016.
    [4]
    SCHOL Z, JUANG J N.Toward open source CubeSat design[J].Acta Astronautica, 2015, 115:384-392. doi: 10.1016/j.actaastro.2015.06.005
    [5]
    苏瑞丰, 张科科, 宋海伟.甚小型卫星发展综述[J].航天器工程, 2012, 22(6):104-111. http://d.old.wanfangdata.com.cn/Periodical/htqgc201306020

    SU R F, ZHANG K K, SONG H W.Summarization of very small satellite development[J].Spacecraft Engineering, 2012, 22(6):104-111(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/htqgc201306020
    [6]
    KONG E M C, KWON D W, SCHWEIGHART S A, et al.Electromagnetic formation flight for multisatellite arrays[J].Journal of Spacecraft and Rockets, 2004, 41(4):659-666. doi: 10.2514/1.2172
    [7]
    MILLER D W, SEDWICK R J, KONG E M C, et al.Electromagnetic formation flight for sparse aperture telescopes[C]//Aerospace Conference Proceedings.Piscataway, NJ: IEEE Press, 2002: 729-742. http://www.researchgate.net/publication/3968657_Electromagnetic_formation_flight_for_sparse_aperture_telescopes
    [8]
    FEHSE W.Automated rendezvous and docking of spacecraft[M].Cambridge:Cambridge University Press, 2003:200-201.
    [9]
    RINGELBERG J.Docking assembly techniques and challenges[C]//AIAA Space Conference & Exposition.Reston: AIAA, 2007: 1-5.
    [10]
    JOSEPH P S.Dynamics of reconfigurable multibody space systems connected by magnetic flux pinning[D].New York: Cornell University, 2011: 4-10.
    [11]
    朱仁璋, 王鸿芳, 丛云天, 等.中外交会对接技术比较研究[J].航天器工程, 2013, 22(3):8-15. doi: 10.3969/j.issn.1673-8748.2013.03.002

    ZHU R Z, WANG H F, CONG Y T, et al.Comparative study of chinese and foreign rendezvous and docking technologies[J].Spacecraft Engineering, 2013, 22(3):8-15(in Chinese). doi: 10.3969/j.issn.1673-8748.2013.03.002
    [12]
    张元文, 杨乐平.空间电磁对接控制问题[J].控制理论与应用, 2010, 27(8):1069-1074. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201008015

    ZHANG Y W, YANG L P.The control of spatial electromagnetic docking[J].Control Theory & Applications, 2010, 27(8):1069-1074(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201008015
    [13]
    ZHANG Y, YANG L, ZHU Y, et al.Self-docking analysis and velocity-aimed control for spacecraft electromagnetic docking[J].Advances in Space Research, 2016, 57(11):2314-2325. doi: 10.1016/j.asr.2016.03.022
    [14]
    张三慧.大学物理学-电磁学[M].北京:清华大学出版社, 1999:120-130.

    ZHANG S H.University physics-electromagnetism[M].Beijing:Tsinghua University Press, 1999:120-130(in Chinese).
    [15]
    张元文, 杨乐平.空间电磁对接的非线性控制[J].控制理论与应用, 2011, 28(8):1181-1186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102740789

    ZHANG Y W, YANG L P.Nonlinear control of space electromagnetic docking[J].Control Theory & Applications, 2011, 28(8):1181-1186(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102740789
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views(844) PDF downloads(365) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return