Volume 44 Issue 12
Dec.  2018
Turn off MathJax
Article Contents
LIN Yijun, WU Fengge, ZHAO Junsuoet al. Image segmentation and density clustering for moving object patches extraction in remote sensing image[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2510-2520. doi: 10.13700/j.bh.1001-5965.2018.0354(in Chinese)
Citation: LIN Yijun, WU Fengge, ZHAO Junsuoet al. Image segmentation and density clustering for moving object patches extraction in remote sensing image[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2510-2520. doi: 10.13700/j.bh.1001-5965.2018.0354(in Chinese)

Image segmentation and density clustering for moving object patches extraction in remote sensing image

doi: 10.13700/j.bh.1001-5965.2018.0354
More Information
  • Corresponding author: WU Fengge, E-mail: fengge@iscas.ac.cn
  • Received Date: 13 Jun 2018
  • Accepted Date: 21 Aug 2018
  • Publish Date: 20 Dec 2018
  • Recently, moving object detection in large-scale remote sensing images achieves outstanding performance by fully convolutional neural network. However, handling such data is very time-consuming because the search space is extremely large. This paper proposes a specific improved method from the point of candidate region proposals. First, irregular candidate areas are roughly extracted by neighborhood differencing and local errors handling. Then a spatial-constraint based density cluster algorithm (SC-DBSCAN) is proposed to merge adjacent areas into patches as CNN input, which aims to reduce final outputs' amount and area. Through the priori of space constraints, this algorithm can adaptively divide data into multi types of clusters, and choose different merging strategies according to the complexity of clusters. For complicated clusters, the outputs are related to traverse sequence of each object, and thus a random search strategy based on simulated annealing is applied to avoid local optima and improve the patches' quality. Finally, by reducing the times of model inferences and avoiding redundant object detections, the detection efficiency of proposed method is significantly improved.

     

  • loading
  • [1]
    徐伟, 金光, 王家骐.吉林一号轻型高分辨率遥感卫星光学成像技术[J].光学精密工程, 2017, 25(8):1969-1978. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201708001

    XU W, JIN G, WANG J Q.Optical imaging technology of JL-1 lightweight high resolution multispectral remote sensing satellite[J].Optics & Precision Engineering, 2017, 25(8):1969-1978(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201708001
    [2]
    MARK K, LUIS G, CHRIS S.Real-time tracking of low-resolution vehicles for wide-area persistent surveillance[C]//Workshop on Application of Computer Vision.Piscataway, NJ: IEEE Press, 2013: 441-448.
    [3]
    IMRAN S, MUBARAK S.Multiframe many-many point correspondence for vehicle tracking in high density wide area aerial videos[J].International Journal of Computer Vision, 2013, 104(2):198-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbf20305e03481f0ddbc2298bd3ea72c
    [4]
    LALONDE R, ZHANG D, SHAH M.ClusterNet: Detecting small objects in large scenes by exploiting spatio-temporal information[C]//Computer Vision and Pattern Recognition (CVPR).Piscataway, NJ: IEEE Press, 2018: 4003-4012.
    [5]
    GAO F, ZHANG Y, WANG J, et al.Visual attention model based vehicle target detection in synthetic aperture radar images:A novel approach[J].Cognitive Computation, 2015, 7(4):434-444. doi: 10.1007/s12559-014-9312-x
    [6]
    GAO F, MA F, ZHANG Y, et al.Biologically inspired progre-ssive enhancement target detection from heavy cluttered SAR images[J].Cognitive Computation, 2016, 8(5):955-966. doi: 10.1007/s12559-016-9405-9
    [7]
    BLASCH E, CHEN G, LING H.Vehicle classification in WAMI imagery using deep network[C]//Sensors and Systems for Space Applications.New York: SPIE, 2016: 9838-9846.
    [8]
    REN S, HE K, GIRSHICK R, et al.Faster R-CNN: Towards real-time object detection with region proposal networks[C]//International Conference on Neural Information Processing Systems.Cambridge: MIT Press, 2015: 91-99.
    [9]
    REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 779-788.
    [10]
    LIU W, ANGUELOV D, ERHAN D, et al.SSD: Single shot multibox detector[C]//European Conference on Computer Vision (ECCV).Berlin: Springer, 2016: 21-37.
    [11]
    DAI J, LI Y, HE K, et al.R-FCN: Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems.Piscataway, NJ: IEEE Press, 2016: 379-387.
    [12]
    SOMMER L W, TEUTSCH M, SCHUCHERT T, et al.A survey moving object detection for wide area motion imagery[C]//Winter Conference on Applications of Computer Vision (WACV).Piscataway, NJ: IEEE Press, 2016: 1-9.
    [13]
    罗群明, 施霖.图像拼接方法综述[J].传感器与微系统, 2017, 36(12):4-6. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201712002

    LUO Q M, SHI L.Review on image stitching methods[J].Transducer & Microsystem Technologies, 2017, 36(12):4-6(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/cgqjs201712002
    [14]
    THOMAS P, MATTHEW A.Detecting and tracking all moving objects in wide-area aerial video[C]//Computer Vision and Pattern Recognition Workshops.Piscataway, NJ: IEEE Press, 2012: 15-22.
    [15]
    ZIVKOVIC Z.Improved adaptive Gaussian mixture model for background subtraction[C]//International Conference on Pa-ttern Recognition.Piscataway, NJ: IEEE Press, 2004: 28-31.
    [16]
    ESTER M, KRIEGEL H P, SANDER J, et al.Density-based spatial clustering of applications with noise[C]//International Conference on Knowledge Discovery and Data Mining.Reston: AIAA, 1996: 226-231.
    [17]
    张小朋, 钱海忠, 岳辉丽, 等.基于模拟退火的空间聚类算法[J].测绘科学技术学报, 2010, 27(4):306-309. doi: 10.3969/j.issn.1673-6338.2010.04.018

    ZHANG X P, QIAN H Z, YUE H L, et al.Simulated-annealing based spatial clustering algorithm[J].Journal of Geomatics Science & Technology, 2010, 27(4):306-309(in Chinese). doi: 10.3969/j.issn.1673-6338.2010.04.018
    [18]
    KIRKPATRICK S.Optimization by simulated annealing:Quantitative studies[J].Journal of Statistical Physics, 1984, 34(5-6):975-986. doi: 10.1007/BF01009452
    [19]
    AFRL.Wright-patterson air force base (wpafb) dataset[EB/OL].[2017-12-10].http://sdms.afrl.af.mil/index.php?collection=wpafb2009.
    [20]
    BASHARAT A, TUREK M, XU Y L, et al.Real-time multi-target tracking at 210 megapixels/second in wide area motion imagery[C]//IEEE Winter Conference on Applications of Computer Vision.Piscataway, NJ: IEEE Press, 2014: 839-846.
    [21]
    GAO F, YOU J, WANG J, et al.A novel target detection method for SAR images based on shadow proposal and saliency analysis[J].Neurocomputing, 2017, 267:220-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dfe94ea6f5d81f985fccc7f369da1da
    [22]
    GAO F, MA F, WANG J, et al.Visual saliency modeling for river detection in high-resolution SAR imagery[J].IEEE Access, 2018, 6:1000-1014. doi: 10.1109/ACCESS.2017.2777444
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(666) PDF downloads(446) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return