Volume 45 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
LI Xiaobing, ZHAO Siyuan, BU Xiangwei, et al. Design of prescribed performance backstepping control method for hypersonic flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 650-661. doi: 10.13700/j.bh.1001-5965.2018.0463(in Chinese)
Citation: LI Xiaobing, ZHAO Siyuan, BU Xiangwei, et al. Design of prescribed performance backstepping control method for hypersonic flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 650-661. doi: 10.13700/j.bh.1001-5965.2018.0463(in Chinese)

Design of prescribed performance backstepping control method for hypersonic flight vehicles

doi: 10.13700/j.bh.1001-5965.2018.0463
Funds:

National Natural Science Foundation of China 61603410

More Information
  • Corresponding author: LI Xiaobing, E-mail: 1098547574@qq.com
  • Received Date: 31 Jul 2018
  • Accepted Date: 16 Oct 2018
  • Publish Date: 20 Apr 2019
  • In order to solve the flight control problem of the air-breathing hypersonic vehicle, a new design method of neural inversion controller with prescribed performance was proposed. By constructing a prescribed performance function, it is ensured that the velocity tracking error and the altitude tracking error can converge to a desired area according to the prescribed convergence speed, overshoot amount and steady state error, and satisfy the preset transient performance and steady state accuracy of the system. Under the backstepping control design structure, the radial basis function(RBF) neural network was introduced to approximate the model unknown function and uncertainties, which improved the robustness of the control system. Only one parameter of the introduced RBF neural network needed to be updated online, which effectively improved the control accuracy, avoided the "differential expansion problem" in the backstepping control method, and reduced the burden of calculation. Finally, the simulation experiments verify the effectiveness and feasibility of the designed control system.

     

  • loading
  • [1]
    孙长银, 穆朝絮, 余瑶.近空间高超声速飞行器控制的几个科学问题研究[J].自动化学报, 2013, 39(11):1901-1913. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201311017

    SUN C Y, MU C X, YU Y.Some control problems for near space hypersonic vehicles[J].Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201311017
    [2]
    黄琳, 段志生, 杨剑影.近空间高超声速飞行器对控制科学的挑战[J].控制理论与应用, 2011, 28(10):1496-1505. http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201110027.htm

    HUANG L, DUAN Z S, YANG J Y.The challenge to control science of near space hypersonic vehicles[J].Control Theory and Application, 2011, 28(10):1496-1505(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201110027.htm
    [3]
    SOLOWAY D I, OUZTS P J, WOLPERT D H, et al.The role of guidance, navigation, and control in hypersonic vehicle multidisciplinary design and optimization: AIAA-2009-7329[R].Reston: AIAA, 2009.
    [4]
    董朝阳, 路遥, 王青.高超声速飞行器指令滤波反演控制[J].宇航学报, 2016, 37(8):957-963. doi: 10.3873/j.issn.1000-1328.2016.08.008

    DONG Z Y, LU Y, WANG Q.Command filtered backstepping control for hypersonic vehicles[J].Journal of Astronautics, 2016, 37(8):957-963(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.08.008
    [5]
    FIORENTINI L.Nonlinear adaptive controller design for air-breathing hypersonic vehicles[D].Columbus: The Ohio State University, 2010.
    [6]
    FIORENTINI L, SERRANI A, BOLENDER M A, et al.Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J].Journal of Guidance, Control, and Dynamics, 2009, 32(2):401-406. doi: 10.2514/1.39210
    [7]
    BOLENDER M A, DOMAN D B.Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J].Journal of Spacecraft and Rockets, 2007, 44(2):374-387. doi: 10.2514/1.23370
    [8]
    PARKER J T, SERRANI A, YURKOVICH S, et al.Control-oriented modeling of an air-breathing hypersonic vehicle[J].Journal of Guidance, Control, and Dynamics, 2007, 30(3):856-869. doi: 10.2514/1.27830
    [9]
    李昭莹, 余令艺, 刘昊, 等.高超声速飞行器非线性鲁棒控律设计[J].控制理论与应用, 2016, 33(1):62-69. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201601008

    LI Z Y, YU L Y, LIU H, et al.Nonlinear robust controller design for hypersonic vehicles[J].Control Theory & Applications, 2016, 33(1):62-69(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201601008
    [10]
    XU H J, MIRMIRANI M D, IANNOU P A.Adaptive sliding mode control design for a hypersonic flight vehicle[J].Journal of Guidance, Control, and Dynamics, 2004, 27(5):829-838. doi: 10.2514/1.12596
    [11]
    余朝军, 江驹, 甄子洋, 等.高超声速飞行器弹性自适应控制方法[J].哈尔滨工程大学学报, 2018, 39(6):1026-1031. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201806009

    YU C J, JIANG J, ZHEN Z Y, et al.A novel resilient adaptive control scheme for hypersonic vehicles[J].Journal of Harbin Engineering University, 2018, 39(6):1026-1031(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201806009
    [12]
    ZONG Q, WANG F, SU R, et al.Robust adaptive backstepping tracking control for a flexible air-breathing hypersonic vehicle subject to input constraint[J].Journal of Aerospace Engineering, 2015, 229(1):10-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdc912adeb267fe3f42925baba615d19
    [13]
    GAO D X, WANG S X, ZHANG H J. A singularly perturbed system approach to adaptive neural back-stepping control design of hypersonic vehicles[J]. Journal of Intelligent and Robotic Systems, 2014, 73(1):249-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=58daf49f46af697bfed46249250799e0
    [14]
    BIN X.Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity[J].Nonlinear Dynamics, 2015, 80(3):1509-1520. doi: 10.1007/s11071-015-1958-8
    [15]
    BECHLIOULIS C P, ROVITHAKIS G A.Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J].IEEE Transactions on Automatic Control, 2008, 53(9):2090-2099. doi: 10.1109/TAC.2008.929402
    [16]
    BECHLIOULIS C P, ROVITHAKIS G A.Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems[J].Automatica, 2009, 45(2):532-538. doi: 10.1016/j.automatica.2008.08.012
    [17]
    王鹏飞, 王洁, 时建明, 等.高超声速飞行器预设性能反演鲁棒控制[J].电机与控制学报, 2017, 21(2):94-102. http://d.old.wanfangdata.com.cn/Periodical/djykzxb201702012

    WANG P F, WANG J, SHI J M, et al.Prescribed performance back-stepping robustness control of a flexible hypersonic vehicle[J].Electric Machines and Control, 2017, 21(2):94-102(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/djykzxb201702012
    [18]
    张扬, 吴文海, 胡云安, 等.基于全状态预设性能的受限制令反演控制器设计[J].控制与决策, 2018, 33(3):479-485. http://www.cnki.com.cn/Article/CJFDTotal-KZYC201803012.htm

    ZHANG Y, WU W H, HU Y A, et al.Constrained command backstepping controller design under full state prescribed performance[J].Control and Decision, 2018, 33(3):479-485(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-KZYC201803012.htm
    [19]
    卜祥伟.高超声速飞行器纵向运动非线型控制技术[M].西安:西安电子科技大学出版社, 2018:16-18.

    BU X W.Nonlinear control technology for longitudinal motion of hypersonic vehicles[M].Xi'an:Xidian University Press, 2018:16-18(in Chinese).
    [20]
    BU X W, WU X Y, HUANG J Q, et al.Minimal-learning-parameter based simplified adaptive neural back-stepping control of flexible air-breathing hypersonic vehicles without virtual controllers[J].Neurocomputing, 2016, 175:816-825. doi: 10.1016/j.neucom.2015.10.116
    [21]
    李惠峰.高超声速飞行器制导与控制技术(下)[M].北京:中国宇航出版社, 2012:469-473.

    LI H F.Hypersonic vehicles guidance and control technology(Ⅱ)[M].Beijing:China Aerospace Press, 2012:469-473(in Chinese).
    [22]
    唐意东, 李小兵, 夏训辉.高超声速飞行器弱抖振反演滑模控制律设计[J].导弹与航天运载技术, 2014, 17(6):17-30. http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201406005

    TANG Y D, LI X B, XIA X H.Design of weak buffet back stepping sliding mode control law for hypersonic vehicles[J].Missiles and Space Vehicles, 2014, 17(6):17-30(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201406005
    [23]
    高道祥, 孙增圻, 罗熊, 等.基于Back-stepping的高超声速飞行器模糊自适应控制[J].控制理论与应用, 2008, 25(5):805-810. http://cdmd.cnki.com.cn/Article/CDMD-10056-1017131564.htm

    GAO D X, SUN Z Y, LUO X, et al.Fuzzy adaptive control for hypersonic vehicle via Back-stepping method[J].Control Theory and Application, 2008, 25(5):805-810(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10056-1017131564.htm
    [24]
    SANNER R M, SLOTINE J E.Gaussian networks for direct adaptive control[J].IEEE Transactions on Neural Networks, 1992, 3(6):837-863. doi: 10.1109/72.165588
    [25]
    胡云安, 耿宝亮, 盖俊峰.初始误差未知的不确定系统预设性能反演控制[J].华中科技大学学报(自然科学版), 2014, 42(8):43-47. http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201408009

    HU Y A, GENG B L, GAI J F.Prescribed performance backstepping control for uncertain systems with unknown initial errors[J].Journal of Huazhong University of Science and Technology(Natural Science Edition), 2014, 42(8):43-47(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201408009
    [26]
    卜祥伟, 吴晓燕, 马震, 等.基于状态重构的吸气式高超声速飞行器鲁棒反演控制器设计[J].固体火箭技术, 2015, 38(3):314-319. http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201503003.htm

    BU X W, WU X Y, MA Z, et al.State-reconstruction-based robust backstepping controller of air-breathing hypersonic vehicles[J].Journal of Solid Rocket Technology, 2015, 38(3):314-319(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201503003.htm
    [27]
    BU X W, WU X Y, ZHANG R, et al.Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle[J].Journal of the Franklin Institute, 2015, 352(4):1739-1765. doi: 10.1016/j.jfranklin.2015.01.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(665) PDF downloads(529) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return