Volume 45 Issue 5
May  2019
Turn off MathJax
Article Contents
QIU Peng, LI Mingqian, YAO Xuri, et al. Dynamic compression measurement identification algorithm of LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 961-969. doi: 10.13700/j.bh.1001-5965.2018.0487(in Chinese)
Citation: QIU Peng, LI Mingqian, YAO Xuri, et al. Dynamic compression measurement identification algorithm of LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 961-969. doi: 10.13700/j.bh.1001-5965.2018.0487(in Chinese)

Dynamic compression measurement identification algorithm of LPV model

doi: 10.13700/j.bh.1001-5965.2018.0487
Funds:

National Natural Science Foundation of China 61605218

National Defense Science and Technology Innovation Foundation of Chinese Academy of Sciences CXJJ-17S023

More Information
  • Corresponding author: ZHAI Guangjie, E-mail:gjzhai@nssc.ac.cn
  • Received Date: 29 Aug 2018
  • Accepted Date: 07 Dec 2018
  • Publish Date: 20 May 2019
  • In solving the identification problem of linear parametric variation (LPV) model, the least squares algorithm is widely used due to the advantages of simple structure and low computational complexity. However, the results of least squares algorithm are subject to computational accuracy and model approximation accuracy, which are mutually exclusive in the same system. Therefore, there is always a certain error between the identification result and the true value of the algorithm. In addition, in the case of high-order LPV model identification or high sampling cost, the general model parameters are much more than the identification data. Consequently, it is difficult for the least squares algorithm to obtain stable identification results. The dynamic compression measurement identification (DCMI) algorithm proposed in this paper improves the system identification accuracy in this case from two aspects. First, the "uniform motion" and "non-uniform motion" models are used to represent the parametric function to improve the approximate accuracy of the model. Second, the under-sampling ability of the compressed sensing theory is utilized to improve the calculation accuracy of the parameters and expand the calculation scale of the model in the case of the same amount of data. The simulation results show that the proposed DCMI algorithm based on the "uniform motion" model can accurately identify the linear parametric function. Even in the case of insufficient identification data, the algorithm can still obtain stable identification results.

     

  • loading
  • [1]
    HOFFMANN C, WERNER H.A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations[J].IEEE Transactions on Control Systems Technology, 2015, 23(2):416-433. doi: 10.1109/TCST.2014.2327584
    [2]
    TURK D, GILLIS J, PIPELEERS G, et al.Identification of linear parameter-varying systems:A reweighted l2, 1-norm regularization approach[J].Mechanical Systems and Signal Processing, 2018, 100:729-742. doi: 10.1016/j.ymssp.2017.07.054
    [3]
    王明昊, 刘刚, 赵鹏涛, 等.高超声速飞行器的LPV变增益状态反馈H控制[J].宇航学报, 2013, 34(4):488-495. doi: 10.3873/j.issn.1000-1328.2013.04.006

    WANG M H, LIU G, ZHAO P T, et al.LPV H control for hypersonic vehicle[J].Journal of Astronautics, 2013, 34(4):488-495(in Chinese). doi: 10.3873/j.issn.1000-1328.2013.04.006
    [4]
    VAN J W, VERHAEGEN M.Subspace identification of bilinear and LPV systems for open-and closed-loop data[J].Automatica, 2009, 45(2):372-381. doi: 10.1016/j.automatica.2008.08.015
    [5]
    BAMIEB B, GIARRE L.Identification of linear parameter varying models[J].International Journal of Robust and Nonlinear Control, 2002, 12(9):841-853. http://cn.bing.com/academic/profile?id=2abde2438c1bbe5c175bac950031851c&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    DE CAIGNY J, CAMINO J F, SWEVERS J.Interpolating model identification for SISO linear parameter-varying systems[J].Mechanical Systems and Signal Processing, 2009, 23(8):2395-2417. doi: 10.1016/j.ymssp.2009.04.007
    [7]
    TOTH R, LYZELL C, ENQVIST M, et al.Order and structural dependence selection of LPV-ARX models using a nonnegative garrote approach[C]//Proceedings of the 48h IEEE Conference on Decision and Control(CDC)Held Jointly with 200928th Chinese Control Conference.Piscataway, NJ: IEEE Press, 2009: 7406-7411.
    [8]
    ROJAS C R, HJALMARSSON H.Sparse estimation based on a validation criterion[C]//Proceedings of 201150th IEEE Conference on Decision and Control and European Control Conference.Piscataway, NJ: IEEE Press, 2011: 2825-2830.
    [9]
    LAURAIN V, TOTH R, ZHENG W X, et al.Nonparametric identification of LPV models under general noise conditions:An LS-SVM based approach[J].IFAC Proceedings Volumes, 2012, 45(16):1761-1766. doi: 10.3182/20120711-3-BE-2027.00230
    [10]
    GOLABI A, MESKIN N, TOTH R, et al.A Bayesian approach for LPV model identification and its application to complex processes[J].IEEE Transactions on Control Systems Technology, 2017, 25(6):2160-2167. doi: 10.1109/TCST.2016.2642159
    [11]
    DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. doi: 10.1109/TIT.2006.871582
    [12]
    CANDÈS E J, TAO T.Decoding by linear programming[J].IEEE Transactions on Information Theory, 2005, 51(12):4203-4215. doi: 10.1109/TIT.2005.858979
    [13]
    ROSSI M, HAIMOVICH A M, ELDAR Y C.Spatial compressive sensing for MIMO radar[J].IEEE Transactions on Signal Processing, 2014, 62(2):419-430. doi: 10.1109/TSP.2013.2289875
    [14]
    WILLETT R M, DUARTE M F, DAVENPORT M A, et al.Sparsity and structure in hyperspectral imaging[J].IEEE Signal Processing Magazine, 2014, 31(1):116-126. doi: 10.1109/MSP.2013.2279507
    [15]
    CANDÈS E J, ROMBERG J.Sparsity and incoherence in compressive sampling[J].Inverse Problems, 2006, 23(3):969-985. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_math%2f0611957
    [16]
    CANDÈS E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique, 2008, 346(9-10):589-592. doi: 10.1016/j.crma.2008.03.014
    [17]
    PATI Y C, REZAⅡFAR R, KRISHNAPRASAD P S.Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[C]//Proceedings of Conference Record of the 27th Asilomar Conference on Signals, Systems and Computers.Piscataway, NJ: IEEE Press, 2002: 40-44.
    [18]
    LI C, ZHANG F.AVA inversion based on the L1-norm-based likelihood function and the total variation regularization constraint[J].Geophysics, 2017, 82(3):1-54. doi: 10.1190/geo2017-0321-TIOgeo.1
    [19]
    王盼盼, 姚旭日, 刘雪峰, 等.基于行扫描测量的运动目标压缩成像[J].物理学报, 2017, 66(1):76-83. http://d.old.wanfangdata.com.cn/Periodical/wlxb201701009

    WANG P P, YAO X R, LIU X F, et al.Motion target imaging using compress sensing[J].Acta Physic Sinica, 2017, 66(1):76-83(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201701009
    [20]
    HAUPT J, BAJWA W U, RAZ G, et al.Toeplitz compressed sensing matrices with applications to sparse channel estimation[J].IEEE Transactions on Information Theory, 2010, 56(11):5862-5875. doi: 10.1109/TIT.2010.2070191
    [21]
    RAUHUT H, ROMBERG J, TROPP J A.Restricted isometries for partial random circulant matrices[J].Applied and Computational Harmonic Analysis, 2012, 32(2):242-254. doi: 10.1016/j.acha.2011.05.001
    [22]
    BARANIUK R, DAVENPORT M, DEVORE R, et al.A simple proof of the restricted isometry property for random matrices[J].Constructive Approximation, 2008, 28(3):253-263. doi: 10.1007/s00365-007-9003-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(697) PDF downloads(314) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return