Volume 45 Issue 5
May  2019
Turn off MathJax
Article Contents
HONG Jie, YANG Zhefu, LYU Chunguang, et al. Robust design method for dynamic properties of high-speed flexible rotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 855-862. doi: 10.13700/j.bh.1001-5965.2018.0492(in Chinese)
Citation: HONG Jie, YANG Zhefu, LYU Chunguang, et al. Robust design method for dynamic properties of high-speed flexible rotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 855-862. doi: 10.13700/j.bh.1001-5965.2018.0492(in Chinese)

Robust design method for dynamic properties of high-speed flexible rotor systems

doi: 10.13700/j.bh.1001-5965.2018.0492
Funds:

National Natural Science Foundation of China 51575022

National Natural Science Foundation of China 11672017

More Information
  • Corresponding author: MA Yanhong, E-mail:mayanhong@buaa.edu.cn
  • Received Date: 29 Aug 2018
  • Accepted Date: 21 Dec 2018
  • Publish Date: 20 May 2019
  • In order to control the deformation of rotor and distribution of multiple critical speeds, it is common to adopt multi-support configuration, which indicates that the optimization is a multi-objective, multi-variable and non-deterministic problem, taking into account parameter uncertainties. An equation of motion for flexible rotor is derived with the aid of Lagrange equation. Penalty functions are introduced to quantitatively describe the distribution feature of multi-order critical speeds. A robust design method for dynamic properties of rotor is presented based on the optimization of critical speed distribution and stiffness loss control of joint structure with the combination of interval analysis method and genetic algorithm. A numerical example shows that by concentrating the multi-order critical speeds into a certain speed interval and controlling the bending strain energy proportion of joint structure, the vibration response passing through multi-order critical speeds and sensitivity of rotor dynamic properties to the change of joint structure stiffness loss are both reduced, thus improving the robustness of this type of rotor system.

     

  • loading
  • [1]
    LIU S, WANG J, HONG J, et al.Dynamics design of the aero-engine rotor joint structures based on experimental and numerical study[C]//ASME Turbo Expo 2010: Power for Land, Sea, and Air.New York: ASME, 2010: 49-60.
    [2]
    RAJAN M, RAJAN S D, NELSON H D, et al.Optimal placement of critical speeds in rotor-bearing systems[J].Journal of Vibration and Acoustics, 1987, 405(1-6):417-419.
    [3]
    [4]
    LIN Y, CHENG L, HUANG T P.Optimal design of complex flexible rotor-support systems using minimum strain energy under multi-constraint conditions[J].Journal of Sound and Vibration, 1998, 215(5):1121-1134. doi: 10.1006/jsvi.1998.1690
    [5]
    ZANG C, FRISWELL M I, MOTTERSHEAD J E.A review of robust optimal design and its application in dynamics[J].Computers & Structures, 2005, 83(4-5):315-326. http://www.sciencedirect.com/science/article/pii/S0045794904004079
    [6]
    LI G, LIN Z, ALLAIRE P E.Robust optimal balancing of high-speed machinery using convex optimization[J].Journal of Vibration and Acoustics, 2008, 130(3):263-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4839be38df9c0d131bc42ee711606c3
    [7]
    MA Y, CAO P, WANG J, et al.Interval analysis method for rotor dynamics with uncertain parameters[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition.New York: ASME, 2011: 307-314.
    [8]
    陈萌.航空发动机转子系统动力特性区间分析理论与方法研究[D].北京: 北京航空航天大学, 2012.

    CHEN M.Investigation on interval analysis theory and method of aero-engine rotor dynamics[D].Beijing: Beihang University, 2012(in Chinese).
    [9]
    RITTO T G, LOPEZ R H, SAMPAIO R, et al.Robust optimization of a flexible rotor-bearing system using the Campbell diagram[J].Engineering Optimization, 2011, 43(1):77-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/03052151003759125
    [10]
    顾家柳, 等.转子动力学[M].北京:国防工业出版社, 1985.

    GU J L, et al.Rotordynamics[M].Beijing:National Defense Industry Press, 1985(in Chinese).
    [11]
    NELSON H D, MCVAUGH J M.The dynamics of rotor-bearing systems using finite elements[J].Journal of Engineering for Industry, 1976, 98(2):593-600. doi: 10.1115/1.3438942
    [12]
    单辉祖.材料力学[M].北京:高等教育出版社, 2009.

    SHAN H Z.Mechanics of materials[M].Beijing:High Education Press, 2009(in Chinese).
    [13]
    洪杰, 于欢, 肖森, 等.高速柔性转子系统非线性振动响应特征分析[J].北京航空航天大学学报, 2018, 44(4):653-661. http://www.cnki.com.cn/Article/CJFDTotal-BJHK201804001.htm

    HONG J, YU H, XIAO S, et al.Nonlinear vibration response characteristics of high-speed flexible rotor system[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4):653-661(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-BJHK201804001.htm
    [14]
    CAVAZZUTI M.Optimization methods[M].Berlin:Springer, 2013.
    [15]
    《航空发动机设计手册》总编委会.航空发动机设计手册第12册传动及润滑系统[M].北京:航空工业出版社, 2000.
    [20]
    The Editorial Board of Design Manual of Aero Engines.Design manual of aero engines Vol.12, Transmission and lubrication system[M].Beijing:Aviation Industry Press, 2000(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(957) PDF downloads(507) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return