Volume 45 Issue 5
May  2019
Turn off MathJax
Article Contents
LUO Lilong, WANG Likai, NIE Xiaohuaet al. A step-compensation optimization method for modular reconfigurable airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 930-935. doi: 10.13700/j.bh.1001-5965.2018.0510(in Chinese)
Citation: LUO Lilong, WANG Likai, NIE Xiaohuaet al. A step-compensation optimization method for modular reconfigurable airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 930-935. doi: 10.13700/j.bh.1001-5965.2018.0510(in Chinese)

A step-compensation optimization method for modular reconfigurable airfoil

doi: 10.13700/j.bh.1001-5965.2018.0510
Funds:

National Natural Science Foundation of China 91730305

More Information
  • Corresponding author: LUO Lilong. E-mail: lilongluo@hotmail.com
  • Received Date: 30 Aug 2018
  • Accepted Date: 30 Nov 2018
  • Publish Date: 20 May 2019
  • For optimization of the modular reconfigurable airfoil structures, three wing modules that distributed along the span direction are taken as research object, and the correlations of load among airfoils with different wingspan are investigated. The complex coupling effects between variables and constraints are resolved by adjusting the design space during iteration automatically. A step-compensation optimization method is proposed for design of the modular reconfigurable airfoil structure. Optimization model of airfoil structures from a modular UAV is established and optimization design is conducted using both the step-compensation method and the traditional single scheme optimization method. The results show that using the proposed method can achieve steady convergence, and compared with the results from single scheme optimization method, the final design in this paper can meet all the design requirements of those three reconfiguration schemes with limited cost of weight, and keep better practicability in engineering.

     

  • loading
  • [1]
    BROWN R B.Low cost innovative design for new commercial transport family: AIAA-2002-5830[R].Reston: AIAA, 2002.
    [2]
    FUNK J E, HARBER J R, MORIN L.Future military common aircraft development opportunities: AIAA-2006-1514[R].Reston: AIAA, 2006.
    [3]
    DE WECK O L, NADIR W D, WONG J G, et al.Modular structures for manned space exploration: The truncated octahedron as a building block: AIAA-2005-2764[R].Reston: AIAA, 2005.
    [4]
    SIMPSON T W.Product platform design and customization:Status and promise[J].Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2004, 18(1):3-20. doi: 10.1017/S0890060404040028
    [5]
    雍明培, 余雄庆.一种面向飞机族的结构优化方法[J].航空学报, 2008, 29(3):664-669. doi: 10.3321/j.issn:1000-6893.2008.03.021

    YONG M P, YU X Q.A structural optimization method for aircraft family[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(3):664-669(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.021
    [6]
    ALLISON J, ROTH B, KOKKOLARAS M, et al.Aircraft family design using decomposition-based method: AIAA-2006-6950[R].Reston: AIAA, 2006.
    [7]
    WILLCOX K, WAKAYAMA S.Simultaneous optimization of a multiple-aircraft family[J].Journal of Aircraft, 2003, 41(4):616-622. https://www.researchgate.net/publication/228599736_Simultaneous_Optimization_of_a_Multiple-Aircraft_Family
    [8]
    李苏杭.飞机模块化结构优化设计的满约束并行优化方法[D].南京: 南京航空航天大学, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D672751

    LI S H.Full-constraint parallel optimization method for aircraft modular structure design[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D672751
    [9]
    BEVILAQUA P M.Future applications of the JSF variable propulsion cycle: AIAA-2003-2614[R].Reston: AIAA, 2003.
    [10]
    FULLER J.The role of manned aircraft in the future: AIAA-2003-2860[R].Reston: AIAA, 2003.
    [11]
    PATE D J, PATTERSON M D, GERMAN B J.Optimizing families of reconfigurable aircraft for multiple missions[J].Journal of Aircraft, 2012, 49(6):1988-2000. doi: 10.2514/1.C031667
    [12]
    CETIN O L, SAITOU K.Decomposition-based assembly synthesis for structural modularity[J].Journal of Mechanical Design, 2004, 126(2):234-243. doi: 10.1115/1.1666890
    [13]
    SOUMA C, VICTOR M, WEI Y T, et al.New modular product platform planning approach to design macroscale reconfigurable unmanned aerial vehicles[J].Journal of Aircraft, 2016, 53(2):309-322. doi: 10.2514/1.C033262
    [14]
    张立丰, 姚卫星, 邹君.模块化飞机结构优化设计的等效多工况法[J].航空学报, 2015, 36(3):834-839. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503015

    ZHANG L F, YAO W X, ZOU J.Equivalent multi-case optimization architecture for modular aircraft structures[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(3):834-839(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201503015
    [15]
    范林, 王哲.模块化技术在飞机研制中的应用[J].航空科学技术, 2010(3):19-21. doi: 10.3969/j.issn.1007-5453.2010.03.007

    FAN L, WANG Z.Application of modularization technology at each development stage of aircraft[J].Aeronautical Science & Technology, 2010(3):19-21(in Chinese). doi: 10.3969/j.issn.1007-5453.2010.03.007
    [16]
    董云峰, 卫晓娜, 郝朝.引入多Agent协商的协同优化在卫星设计中的应用[J], 北京航空航天大学学报, 2016, 42(5):1055-1064. http://bhxb.buaa.edu.cn/CN/abstract/abstract13744.shtml

    DONG Y F, WEI X N, HAO Z.A multi-Agent negotiation based collaborative optimization application in satellite design[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):1055-1064(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13744.shtml
    [17]
    马树微, 李静琳, 陈曦, 等.多级固体运载火箭分级多学科设计优化[J].北京航空航天大学学报, 2016, 42(3):542-550. http://bhxb.buaa.edu.cn/CN/abstract/abstract13387.shtml

    MA S W, LI J L, CHEN X, et al.Stage-wise multidisciplinary design optimization for multi-stage solid launch vehicle[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3):542-550(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13387.shtml
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views(642) PDF downloads(347) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return