Citation: | HAO Baoxin, ZHOU Zhicheng, QU Guangji, et al. Comparison of determining methods and constraint schemes for geometric stability in truss topology optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1663-1673. doi: 10.13700/j.bh.1001-5965.2018.0624(in Chinese) |
To improve the accuracy of determining truss geometric stability and the practicability of truss topology optimization results, several ways of determining truss geometric stability were compared, and the validity of three schemes for guaranteeing truss geometric stability of topology optimization results were discussed. First, by comparing several ways to identify truss geometric stability through some illustrative tiny trusses, a simple procedure was outlined to evaluate truss geometric stability. Second, a unified semidefinite programming (SDP) formulation of the truss topology optimization problem was established for three kinds of constraints to address the geometric stability issue. Finally, three truss structures were optimized with the SDP formulation, and the geometric stabilities of the resultant trusses were evaluated by the given simple scheme to reveal the validity of the three kinds of constraints to guarantee geometric stability. The results show that considering additional loads or the global stability constraint cannot guarantee the geometric stability of the optimized trusses while the fundamental frequency constraint can do when the constraint values are reasonably chosen.
[1] |
RULE W K.Automatic truss design by optimized growth[J].Journal of Structural Engineering, 1994, 120(10):3063-3070. doi: 10.1061/(ASCE)0733-9445(1994)120:10(3063)
|
[2] |
MCKEOWN J J.Growing optimal pin-jointed frames[J].Structural Optimization, 1998, 15(2):92-100. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ02253635/
|
[3] |
MARTÍNEZ P, MARTÍ P, QUERIN O M.Growth method for size, topology, and geometry optimization of trusss structures[J].Structural and Multidisciplinary Optimization, 2007, 33(1):13-26. https://www.researchgate.net/publication/225431892_Growth_method_for_size_topology_and_geometry_optimization_of_truss_structures
|
[4] |
HAGISHITA H, OHSAKI M.Topology optimization of trusses by growing ground structure method[J].Structural and Multidisciplinary Optimization, 2009, 37(4):377-393. doi: 10.1007/s00158-008-0237-4
|
[5] |
HOOSHMAND A, CAMPBELL M I.Truss layout design and optimization using a generative synthesis[J].Computers and Structures, 2016, 163:1-28. doi: 10.1016/j.compstruc.2015.09.010
|
[6] |
DORN W, GOMORY R, GREENBERG M.Automatic design of optimal structures[J].Journal de Mechanique, 1964, 3:25-52. http://cn.bing.com/academic/profile?id=8522bcecce5f53969315bebaabe4bf08&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
TYAS A, GILBERT M, PRITCHARD T.Practical plastic layout optimization of trusses incorporating stability considerations[J].Computers and Structures, 2006, 84:115-126. doi: 10.1016/j.compstruc.2005.09.032
|
[8] |
DESCAMPS B, COELHO R F.The nominal force method for truss geometry and topology optimization incorporating stability considerations[J].International Journal of Solids and Structures, 2014, 51:2390-2399. doi: 10.1016/j.ijsolstr.2014.03.003
|
[9] |
OHSAKI M, KATOH N.Topology optimization of trusses with stress and local constraints on nodal stability and member intersection[J].Structural and Multidisciplinary Optimization, 2005, 29(3):190-197. http://cn.bing.com/academic/profile?id=fdba10bb723d21d44b6ac5a88bbbd456&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
CERVEIRA A, AGRA A, BASTOS F, et al.A new branch and bound method for a discrete truss topology design problem[J].Computational Optimization and Applications, 2013, 54(1):163-187. doi: 10.1007/s10589-012-9487-6
|
[11] |
MELA K.Resolving issues with member buckling in truss topology optimization using a mixed variable approach[J].Structural and Multidisciplinary Optimization, 2014, 50(6):1037-1049. doi: 10.1007/s00158-014-1095-x
|
[12] |
冷国俊, 张卓, 保宏, 等.考虑重叠过滤及稳定性约束的桁架拓扑优化方法[J].工程力学, 2013, 30(2):8-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201302002
LENG G J, ZHANG Z, BAO H, et al.Topology optimization of truss structure based on overlapping-filter and stability constraints[J].Engineering Mechanics, 2013, 30(2):8-12(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201302002
|
[13] |
GUO X, CHENG G D, OLHOFF N.Optimum design of truss topology under buckling constraints[J].Structural and Multidisciplinary Optimization, 2005, 30(3):169-180. doi: 10.1007/s00158-004-0511-z
|
[14] |
KOČVARA M.On the modelling and solving of the truss design problem with global stability constraints[J].Structural and Multidisciplinary Optimization, 2002, 23(3):189-203. http://cn.bing.com/academic/profile?id=924de4433759ec33a9d5dad8b5a134f2&encoded=0&v=paper_preview&mkt=zh-cn
|
[15] |
DEB K, GULATI S.Design of truss-structures for minimum weight using genetic algorithms[J].Finite Elements in Analysis and Design, 2001, 37(5):447-465. doi: 10.1016/S0168-874X(00)00057-3
|
[16] |
SAVSANI V J, TEJANI G G, PATEL V K, et al.Modified meta-heuristics using random mutation for truss topology optimization with static and dynamic constraints[J].Journal of Computational Design and Engineering, 2017, 4(2):106-130. doi: 10.1016/j.jcde.2016.10.002
|
[17] |
RICHARDSON J N, ADRIAENSSENS S, BOUILLARD P, et al.Multiobjective topology optimization of truss structures with kinematic stability repair[J].Structural and Multidisciplinary Optimization, 2012, 46(4):513-532. doi: 10.1007/s00158-012-0777-5
|
[18] |
AHRARI A, DEB K.An improved fully stressed design evolution strategy for layout optimization of truss structures[J].Computers and Structures, 2016, 164:127-144. doi: 10.1016/j.compstruc.2015.11.009
|
[19] |
PELLEGRINO S, CALLADINE C R.Matrix analysis of statically and kinematically indeterminate frameworks[J].International Journal of Solids and Structures, 1986, 22(4):409-428. doi: 10.1016/0020-7683(86)90014-4
|
[20] |
PELLEGRINO S.Structural computations with the singular value decomposition of the equilibrium matrix[J].International Journal of Solids and Structures, 1993, 30(21):3025-3035. doi: 10.1016/0020-7683(93)90210-X
|
[21] |
阎军, 杨春秋.计算结构力学[M].北京:科学出版社, 2014:1-3.
YAN J, YANG C Q.Computational structural mechanics[M].Beijing:Science Press, 2014:1-3(in Chinese).
|
[22] |
修乃华, 罗自炎.半定规划[M].北京:北京交通大学出版社, 2014:1-79.
XIU N H, LUO Z Y.Semidefinite programming[M].Beijing:Beijing Jiaotong University Press, 2014:1-79(in Chinese).
|
[23] |
BEN-TAL A, NEMIROVSKI A.Robust truss topology design via semidefinite programming[J].SIAM Journal on Optimization, 1997, 7(4):991-1016. doi: 10.1137/S1052623495291951
|
[24] |
OHSAKI M, FUJISAWA K, KATOH N, et al.Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints[J].Computer Methods in Applied Mechanics and Engineering, 1999, 180(1-2):203-217. doi: 10.1016/S0045-7825(99)00056-0
|
[25] |
BEN-TAL A, JARRE F, KOČVARA M, et al.Optimal design of trusses under a nonconvex global buckling constraint[J].Optimization and Engineering, 2000, 1(2):189-213. doi: 10.1023/A:1010091831812
|
[26] |
ACHTZIGER W, KOČVARA M.On the maximization of the fundamental eigenvalue in topology optimization[J].Structural and Multidisciplinary Optimization, 2007, 34(3):181-195. doi: 10.1007/s00158-007-0117-3
|
[27] |
STURM J F.Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[J].Optimization Methods and Software, 1999, 11(1-4):625-653. doi: 10.1080/10556789908805766
|
[28] |
TÜTÜNCÜ R H, TOH K C, TODD M J.Solving semidefinite-quadratic-linear programs using SDPT3[J].Mathematical Programming, 2003, 95(2):189-217. doi: 10.1007/s10107-002-0347-5
|
[29] |
FIALA J, KOČVARA M, STINGL M.PENLAB: A MATLAB solver for nonlinear semidefinite optimization[J/OL].(2013-11-20)[2018-08-20].http://arxiv.org/abs/1311.5240.
|
[30] |
KANNO Y, OHSAKI M, KATOH N.Sequential semidefinite programming for optimization of framed structures under multimodal buckling constraints[J].International Journal of Structural Stability and Dynamics, 2001, 1(4):585-602. doi: 10.1142/S0219455401000305
|
[31] |
张贤达.矩阵分析与应用[M].2版.北京:清华大学出版社, 2013:61-67.
ZHANG X D.Matrix analysis and applications[M].2nd ed.Beijing:Tsinghua University Press, 2013:61-67(in Chinese).
|