Citation: | LI Hong, ZHANG Zhibin. Ensemble clustering algorithm based on rapid simulated annealing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1646-1652. doi: 10.13700/j.bh.1001-5965.2018.0647(in Chinese) |
There are two key issues in applying simulated annealing algorithm to solve the problem of ensemble clustering. One is how to use basic partition information in annealing process to obtain better result, and the other is how to accelerate the algorithm convergence. In this paper, the rapid simulated annealing based on voting (BV-RSA) model is presented, in which the complete and partial consensuses of basic partitions are used to recognize super-objects and construct voting box for each super-object. In the process of simulated annealing, some data samples represented by a super-object are controlled to move in a group, and the motion direction of a super-object is selected randomly in the scope of its voting box, thus reducing moving randomness and speeding up the clustering of super-objects. Experiments on multiple data sets demonstrate that the BV-RSA model performs well in both clustering accuracy and robustness.
[1] |
NGUYEN N, CARUANA R.Consensus clusterings[C]//IEEE International Conference on Data Mining.Piscataway, NJ: IEEE Press, 2007: 607-612.
|
[2] |
STREHL A, GHOSH J.Cluster ensembles:A knowledge reuse framework for combining partitionings[J].Journal of Machine Learning Research, 2002, 3(3):583-617. http://cn.bing.com/academic/profile?id=95607976ad8495bf99b3e460dbad4285&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
AYAD H, KAMEL M.Refined shared nearest neighbors graph for combining multiple data clusterings[C]//Advances in Intelligent Data Analysis.Berlin: Springer, 2003: 307-318. https://www.researchgate.net/publication/221460998_Refined_Shared_Nearest_Neighbors_Graph_for_Combining_Multiple_Data_Clusterings
|
[4] |
YANG Y, KAMEL M S.An aggregated clustering approach using multi-ant colonies algorithms[J].Pattern Recognition, 2006, 39(7):1278-1289. doi: 10.1016/j.patcog.2006.02.012
|
[5] |
FERN X Z, BRODLEY C E.Solving cluster ensemble problems by bipartite graph partitioning[C]//Proceedings of Twenty-First International Conference on Machine Learning.New York: ACM, 2004: 281-288. http://web.engr.oregonstate.edu/~xfern/graph_icml04.pdf
|
[6] |
YU Z, HAN G, LI L, et al.Adaptive noise immune cluster ensemble using affinity propagation[C]//IEEE International Conference on Data Engineering.Piscataway, NJ: IEEE Press, 2016: 1454-1455. Adaptive noise immune cluster ensemble using affinity propagation
|
[7] |
FRED A L N, JAIN A K.Combining multiple clusterings using evidence accumulation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6):835-850. doi: 10.1109/TPAMI.2005.113
|
[8] |
WANG X, YANG C, ZHOU J.Clustering aggregation by probability accumulation[J].Pattern Recognition, 2009, 42(5):668-675. doi: 10.1016/j.patcog.2008.09.013
|
[9] |
HU M, DENG X, YAO Y.A sequential three-way approach to constructing a co-association matrix in consensus clustering[C]//International Joint Conference on Rough Sets.Berlin: Springer, 2018, 11103: 599-613. doi: 10.1007%2F978-3-319-99368-3_47
|
[10] |
LIU H, LIU T, WU J, et al.Spectral ensemble clustering[C]//Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining.New York: ACM, 2015: 715-724. https://wenku.baidu.com/view/b5f0cb917fd5360cbb1adb37.html
|
[11] |
HUANG D, WANG C D, LAI J H.Locally weighted ensemble clustering[J].IEEE Transactions on Cybernetics, 2016, 48(5):1460-1473. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201314022
|
[12] |
ZHOU Z H, TANG W.Clusterer ensemble[J].Knowledge-Based Systems, 2006, 19(1):77-83. http://d.old.wanfangdata.com.cn/Periodical/rjxb200504002
|
[13] |
FU Y, YANG Y, LIU Y.A decision model for fuzzy clustering ensemble[C]//Proceedings of the International Conference on Intelligent Systems and Knowledge Engineering.Paris: Atlantis Press, 2007. https://www.researchgate.net/publication/266650562_A_Decision_Model_for_Fuzzy_Clustering_Ensemble
|
[14] |
陈晓云, 陈刚.基于最大内聚度基准的加权投票聚类集成[J].控制与决策, 2014(2):236-240. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201402008
CHEN X Y, CHEN G.Weighted voting clustering ensemble based on maximum cohesion[J].Control and Decision, 2014(2):236-240(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzyjc201402008
|
[15] |
LU Z, PENG Y, XIAO J.From comparing clusterings to combining clusterings[C]//23rd AAAI Conference on Artificial Intelligence and the 20th Innovative Applications of Artificial Intelligence Conference.Palo Alto: AAAI, 2008, 2: 665-670. https://www.aaai.org/Papers/AAAI/2008/AAAI08-106.pdf
|
[16] |
HUANG D, LAI J, WANG C D.Ensemble clustering using factor graph[J].Pattern Recognition, 2016, 50(C):131-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b837e47b9d728114f197c99a1582ceec
|
[17] |
TOPCHY A P, JAIN A K, PUNCH W F.A mixture model for clustering ensembles[C]//Proceedings of the Fourth SIAM International Conference on Data Mining.Philadelphia: SIAM Publications, 2004: 379-390. http://dataclustering.cse.msu.edu/papers/topchy_mixture_siam_accepted.pdf
|
[18] |
蒋君, 徐蔚鸿, 潘楚.基于粒计算和模拟退火的K-medoids聚类算法[J].计算机仿真, 2015, 32(12):214-217. doi: 10.3969/j.issn.1006-9348.2015.12.045
JIANG J, XU W H, PAN C.Improved K-medoids clustering algorithm based on many factors[J].Computer Simulation, 2015, 32(12):214-217(in Chinese). doi: 10.3969/j.issn.1006-9348.2015.12.045
|
[19] |
SARTAKHTI J S, AFRABANDPEY H, SARAEE M.Simulated annealing least squares twin support vector machine (SA-LSTSVM) for pattern classification[J].Soft Computing, 2017, 21(15):4361-4373. doi: 10.1007/s00500-016-2067-4
|