Citation: | WANG Yan, LIN Bin, DONGYE Guangheng, et al. Design and finite element optimization analyses of accessory ultrasonic vibration working table[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1589-1596. doi: 10.13700/j.bh.1001-5965.2018.0698(in Chinese) |
Ultrasonic vibration assisted machining provides effective manufacturing solutions for difficult-to-machine materials such as alloy materials, brittle materials and composite materials, which is widely used in aerospace, defense, electronics and other high-technology fields. The complex structure, high degree of specialization and poor reliability of ultrasonic vibration assisted machining device restrict the promotion of ultrasonic processing technology. In order to popularize the application scope of ultrasonic vibration assisted machining, an accessory ultrasonic vibration working table is designed based on the principle of ultrasonic energy transmission, which can be conveniently installed in the machining center to provide ultrasonic vibration assisted machining for the workpiece. First, two types of materials were applied to structural design of the table, the working frequency and vibration form were determined through the modal analysis, and the working stability was presented by harmonic response analysis. Second, the working table structure optimization was carried out by the method of multi-objective optimization. The quality of the working table was reduced under the condition of guaranteeing invariable total deformation, in order to reduce the loss of ultrasonic energy and improve the working reliability. Finally, in order to make the working table more suitable for the actual machining needs, the material of the working table was selected and the table size was adjusted by comparing the results of finite element analysis before and after optimization. The results of analysis indicate that 45 # steel vibration working table has better vibration stability and smaller vibration amplitude. The overall mass of the vibration table was reduced by 27%, the working frequency was reduced by 11% through multi-objective optimization. The bandwidth difference of resonance frequency between the two workbenches is quite small.
[1] |
张德远.中国的超声加工[J].机械工程学报, 2017, 53(19):1-2. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201719001
ZHANG D Y.Ultrasonic machining in China[J].Journal of Mechanical Engineering, 2017, 53(19):1-2(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201719001
|
[2] |
冯平法, 王健健, 张建富, 等.硬脆材料旋转超声加工技术的研究现状及展望[J].机械工程学报, 2017, 53(19):3-21. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201719002
FENG P F, WANG J J, ZHANG J F, et al.Research status and prospect of rotating ultrasonic machining technology for hard and brittle materials[J].Journal of Mechanical Engineering, 2017, 53(19):3-21(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201719002
|
[3] |
房善想, 赵慧玲, 张勤俭.超声加工技术的应用现状及其发展趋势[J].机械工程学报, 2017, 53(19):22-32. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201719003
FANG S X, ZHAO H L, ZHANG Q J.Application status and development trend of ultrasonic machining technology[J].Journal of Mechanical Engineering, 2017, 53(19):22-32(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201719003
|
[4] |
张园, 康仁科, 刘津廷, 等.超声振动辅助钻削技术综述[J].机械工程学报, 2017, 53(19):33-44. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201719004
ZHANG Y, KANG R K, LIU J T, et al.Ultrasonic vibration assisted drilling technology review[J].Journal of Mechanical Engineering, 2017, 53(19):33-44(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201719004
|
[5] |
唐军, 赵波.超声波椭圆振动加工技术的研究进展[J].金刚石与磨料磨具工程, 2014(1):70-78. http://d.old.wanfangdata.com.cn/Periodical/jgsymlmjgc201401015
TANG J, ZHAO B.Development of ultrasonic elliptical vibration machining[J].Diamond and Abrasives Engineering, 2014(1):70-78(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgsymlmjgc201401015
|
[6] |
GONG H, FANG F Z, HU X T, et al.Kinematic view of tool life in rotary ultrasonic side milling of hard brittle materials[J].International Journal of Machine Tools and Manufacture, 2010, 50(3):303-307. doi: 10.1016/j.ijmachtools.2009.12.006
|
[7] |
WANG Y, LIN B, WANG S L, et al.Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing[J].International Journal of Machine Tools and Manufacture, 2014, 77:66-73. doi: 10.1016/j.ijmachtools.2013.11.003
|
[8] |
WANG Y, SARIN V K, LIN B, et al.Feasibility study of the ultrasonic vibration filing of carbon fiber reinforced silicon carbide composites[J].International Journal of Machine Tools and Manufacture, 2016, 101:10-17. doi: 10.1016/j.ijmachtools.2015.11.003
|
[9] |
GENG D X, ZHANG D Y, LI Z, et al.Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks[J].Ultrasonics, 2017, 75:80-90. doi: 10.1016/j.ultras.2016.11.011
|
[10] |
LIANG Z Q, WU Y B, WANG X B, et al.A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining[J].International Journal of Machine Tools and Manufacture, 2010, 50(8):728-736. doi: 10.1016/j.ijmachtools.2010.04.005
|
[11] |
姚震.旋转超声加工振动系统及电源技术研究[D].广州: 广东工业大学, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2795376
YAO Z.The research of a rotary ultrasonic vibration system and power technology[D].Guangzhou: Guangdong University of Technology, 2015(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2795376
|
[12] |
李贵花.旋转超声加工振动系统的研究[D].北京: 北方工业大学, 2010. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201004051.htm
LI G H.The research of a rotary ultrasonic machining system[D].Beijing: North China University of Technology, 2010(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201004051.htm
|
[13] |
马付建.超声辅助加工系统研发及其在复合材料加工中的应用[D].大连: 大连理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10141-1013197991.htm
MA F J.The development of ultrasonic assisted machining system and its application in machining on composites[D].Dalian: Dalian University of Technology, 2013(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10141-1013197991.htm
|
[14] |
贺西平, 张海岛.单端输入多端输出的纵振动转换体的研究[J].中国科学:物理学力学天文学, 2016, 46(3):034301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201603003
HE X P, ZHANG H D.Investigation of a converter of longitudinal vibration with single-input and multi-outputs[J].SCIENTIA SINICA Physica, Mechanica & Astronomica, 2016, 46(3):034301(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201603003
|
[15] |
王岩.轴向超声振动辅助磨削加工机理与试验研究[D].天津: 天津大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10056-1017134277.htm
WANG Y.The mechanism and experimental study of axial ultrasonic vibration assisted grinding[D].Tianjin: Tianjin University, 2015(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10056-1017134277.htm
|
[16] |
刘礼平.基于机床附件化的旋转超声波加工关键技术研究[D].天津: 天津大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10056-1012022126.htm
LIU L P.Study on the key technologies of rotary ultrasonic machining based on accessory of the machine tool[D].Tianjin: Tianjin University, 2011(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10056-1012022126.htm
|
[17] |
赵蕾.超声辅助微细钻削精密振动装置的研究[D].太原: 太原理工大学, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2797405
ZHAO L.Ultrasonic-assisted micro-drilling precision vibration device[D].Taiyuan: Taiyuan University of Technology, 2015(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2797405
|
[18] |
郑书友.旋转超声加工机床的研制及试验研究[D].厦门: 华侨大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D050308
ZHENG S Y.Development of a rotary ultrasonic machine and experimental study of machining on the machine[D].Xiamen: Huaqiao University, 2008(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D050308
|
[19] |
冯若.超声手册[M].南京:南京大学出版社, 2001.
FENG R.Ultrasound handbook[M].Nanjing:Nanjing University Press, 2001(in Chinese).
|