Citation: | LIU Qiang, LI Pengyang, XU Guangyao, et al. Optimal design for magnetic circuit in giant magnetostrictive ultrasonic transducer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1639-1645. doi: 10.13700/j.bh.1001-5965.2018.0737(in Chinese) |
In order to improve the magnetic circuit environment and minimize the heating of the giant magnetostrictive ultrasonic transducer, the magnetic path gap was taken as the research object, and the relationships between the magnetic path gap and the magnetic field strength of the giant magnetostrictive material (GMM) rod were analyzed by Maxwell finite element software. The impedance and amplitude of the ultrasonic transducer and the temperature of the GMM rod were measured by experiments. Experimental results show that the magnetic field strength and magnetic field uniformity of the GMM rod decrease with the increase of the magnetic path gap. As the slot width of the magnetically permeable cylinder increases, the resonant frequency of the ultrasonic transducer is basically the same, the temperature of the GMM rod is reduced; When the slot width of the magnetic cylinder is about 6 mm, the magnetic field uniformity of the GMM rod is the highest and the mechanical quality factor is the largest, which is of great significance for the optimal design of the giant magnetostrictive ultrasonic transducer.
[1] |
PETRUZELKA J, SARMANOVA J, SARMAN A.The effect of ultrasound on tube drawing[J].Journal of Materials Processing Technology, 1996, 60(1-4):661-668. doi: 10.1016/0924-0136(96)02402-8
|
[2] |
OLABI A G, GRUNWALD A.Design and application of magnetostrictive materials[J].Materials & Design, 2008, 29(2):469-483. doi: 10.1016-j.matdes.2006.12.016/
|
[3] |
LIU W J, ZHOU L S, XIA T J, et al.Rare earth ultrasonic transducer technique research[J].Ultrasonics, 2006, 44(4):689-692.
|
[4] |
STILLESJO F, ENGDAHL G, WEI Z, et al.Dynamic simulation and performance study of magnetostrictive transducers for ultrasonic applications[C]//SPIE Annual International Symposium on Smart Structures & Materials, 2000, 3992: 594-602. doi: 10.1117/12.388243.short?SSO=1
|
[5] |
KWAK Y K, KIM S H, AHN J H.Improvement of positioning accuracy of magnetostrictive actuator by means of built-in air cooling and temperature control[J].International Journal of Precision Engineering & Manufacturing, 2011, 12(5):829-834.
|
[6] |
CAI W C, FENG P F, ZHANG J F, et al.Effect of temperature on the performance of a giant magnetostrictive ultrasonic transducer[J].Journal of Vibroengineering, 2016, 18(2):1307-1318.
|
[7] |
王亚普, 龙士国.温度对磁致伸缩换能器动态输出特性的影响[J].压电与声光, 2014, 36(2):266-269. doi: 10.3969/j.issn.1004-2474.2014.02.029
WANG Y P, LONG S G.The effect of temperature on the dynamic output characteristics of magnetostrictive transducer[J].Piezoelectrics & Acoustooptics, 2014, 36(2):266-269(in Chinese). doi: 10.3969/j.issn.1004-2474.2014.02.029
|
[8] |
明廷鑫, 陶孟仑, 黄志威, 等.一种超磁致伸缩致动器温度控制系统的设计与分析[J].武汉理工大学学报, 2015, 37(9):106-112.
MING T X, TAO M L, HUANG Z W, et al.The design and analysis of the temperature control system of giant magnetostrictive actuator[J].Journal of Wuhan University of Technology, 2015, 37(9):106-112(in Chinese).
|
[9] |
曾海泉, 曾庚鑫, 曾建斌, 等.超磁致伸缩功率超声换能器热分析[J].中国电机工程学报, 2011, 31(6):116-120.
ZENG H Q, ZENG G X, ZENG J B, et al.Thermal analysis of giant magnetostrictive high power ultrasonic transducer[J].Proceedings of the CSEE, 2011, 31(6):116-120(in Chinese).
|
[10] |
高晓辉, 刘永光, 裴忠才.超磁致伸缩作动器磁路优化设计[J].哈尔滨工业大学学报, 2016, 48(9):145-150.
GAO X H, LIU Y G, PEI Z C.Optimization and design for magnetic circuit in giant magnetostrictive actuator[J].Journal of Harbin Institute of Technology, 2016, 48(9):145-150(in Chinese).
|
[11] |
李跃松, 朱玉川, 吴洪涛, 等.射流伺服阀用超磁致伸缩执行器磁场建模与分析[J].兵工学报, 2010, 31(12):1587-1592.
LI Y S, ZHU Y C, WU H T, et al.The magnetic field modeling and analysis of giant magnetostrictive actuator for jet servo valve[J].Acta Armamentarii, 2010, 31(12):1587-1592(in Chinese).
|
[12] |
李鹏阳, 刘强, 周玲霞.超磁致伸缩超声换能器设计分析[J].应用基础与工程科学学报, 2017, 25(5):1065-1075.
LI P Y, LIU Q, ZHOU L X.Design and numerical simulation analysis of a giant magnetostrictive ultrasonic transducer[J].Journal of Basic Science and Engineering, 2017, 25(5):1065-1075(in Chinese).
|
[13] |
杨远飞, 张天丽, 蒋成保.用于GMA的新型永磁偏置闭合磁路[J].北京航空航天大学学报, 2012, 38(12):1682-1685. https://bhxb.buaa.edu.cn/CN/abstract/abstract12490.shtml
YANG Y F, ZHANG T L, JIANG C B.Novel closed magnetic circuit with permanent biased for giant magnetostrictive actuator[J].Journal of Beijing University of Aeroautics and Astronautics, 2012, 38(12):1682-1685(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12490.shtml
|
[14] |
李琳, 陈亮良, 杨勇.超磁致伸缩作动器的结构分析[J].北京航空航天大学学报, 2013, 39(9):1269-1274. https://bhxb.buaa.edu.cn/CN/abstract/abstract12737.shtml
LI L, CHEN L L, YANG Y.Structural analysis of giant magnetostrictive actuator[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9):1269-1274(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12737.shtml
|
[15] |
XUE G M, ZHANG P L, HE Z B, et al.Revised reluctance model of the axial magnetic field intensity within giant magnetostrictive rod[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2016, 231(14):2718-2729.
|
[16] |
杨旭磊, 朱玉川, 费尚书, 等.超磁致伸缩电静液作动器磁场分析与优化[J].航空动力学报, 2016, 31(9):2210-2217.
YANG X L, ZHU Y C, FEI S S, et al.Magnetic field analysis and optimization of giant magnetostrictive electro-hydrostatic actuator[J].Journal of Aerospace Power, 2016, 31(9):2210-2217(in Chinese).
|
[17] |
陈爽, 赵录冬, 周杰, 等.稀土超磁致伸缩换能器磁路设计与仿真[J].机械设计与制造, 2018(2):43-46. doi: 10.3969/j.issn.1001-3997.2018.02.013
CHEN S, ZHAO L D, ZHOU J, et al.The magnetic circuit design and simulation of rare earth giant magnetostrictive transducer[J].Machinery Design & Manufacture, 2018(2):43-46(in Chinese). doi: 10.3969/j.issn.1001-3997.2018.02.013
|
[18] |
CALKINS F T, DAPINO M J, FLATAU A B.Effect of prestress on the dynamic performace of a Terfenol-D transducer[C]//Proceedings of SPIE-The International Society for Optical Engineering.Washington, D.C.: SPIE, 1997, 3041: 293-304.
|
[1] | WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0965. |
[2] | XU Zhiqiang, GUO Yudong, ZHANG Wenqiang, LIU Yatong, LI Ang, WANG Anni. Research on aerodynamic flow field characteristics of guide-injected icing detector[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0767 |
[3] | YANG B C,HAN J F. Optimization of key parameters of electromagnetic coil launching based on uniform design experimentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):440-445 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0040. |
[4] | SHI C P,HE H F,HE Y M,et al. Joint estimation of DOA and polarization parameters based on uniform circle array with vector sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1325-1335 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0390. |
[5] | LIU X,WANG Z Y,WANG X Y. Optimization three-vector-based model predictive current control for permanent magnet toroidal motor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3297-3309 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0833. |
[6] | GE Jian-hao, GUO Jie, WANG Hao-ning, ZHANG Bao-chao, WAN Yang-yang, TANG Sheng-jing. Adaptive model predictive control for hypersonic morphing gliding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0081 |
[7] | MENG Z P,YANG L Q,WANG B,et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2449-2460 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0698. |
[8] | YANG Gong-peng, ZHOU Zheng-gan, MA Teng-fei, WANG Jun, LI Yang, ZHOU Wen-bin. Research on finite element simulation modeling for ultrasonic testing of coarse-grained materials[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0676 |
[9] | YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0849. |
[10] | PANG Wei-kun, WANG Wei-jie, FAN Ya-hong, LI Lei, YANG Yang, ZHU Hong-ye. Design and analysis of double magnetic circuit rotating Lorentz force magnetic bearing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0763 |
[11] | DAI W,SHI S Z,FU Y C,et al. Numerical study on flow and heat transfer of supercritical carbon dioxide under non-uniform heat flux influences[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3074-3083 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0769. |
[12] | CHEN S Z,LI D C,XIANG J W. Design optimization of tow-steered composite structure targeting on manufacturing cost[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2423-2431 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0677. |
[13] | ZHANG X W,ZHANG M,YU D Y,et al. Analysis of influence of ultrasonic drilling structure parameters on output characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1735-1742 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0554. |
[14] | WANG Chi, LIU Wei, GAO Yang. Three convexification-based guidance methods for six-degree-of-freedom powered descent problems[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0235 |
[15] | WANG Y H,LU Y N,LI H W,et al. Influence and criterion of buoyancy force on heat transfer of supercritical CO2 in a vertical helical tube[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2929-2937 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0024. |
[16] | CHEN R H,LUO J,HU A Y,et al. Uniform circular multiphase modulation correlation radiometer and its sensitivity analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1857-1863 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0560. |
[17] | SHANG S F,YANG X N,YANG Y,et al. Secondary electron multiplication of aluminum under strong vacuum electromagnetic field[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1606-1613 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0514. |
[18] | HAO Dong, LIU Jian-xia, SU Jie, HE Yuan-yuan. Optimization of multilayer thermal insulation structure for high-speed aircraft considering material optimization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0261 |
[19] | FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0566. |
[20] | SUN M M,GENG H,HU J,et al. Discharge model of divergent magnetic field ion thruster of 10 cm diameter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2258-2266 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0648. |