Zhuang Damin, Yuan Xiugan. Optimum Association of Difference Schemes[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2): 192-196. (in Chinese)
Citation: XIE Yingxian, WU Yingchun, WANG Yumei, et al. Light field all-in-focus image fusion based on wavelet domain sharpness evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1848-1854. doi: 10.13700/j.bh.1001-5965.2018.0739(in Chinese)

Light field all-in-focus image fusion based on wavelet domain sharpness evaluation

doi: 10.13700/j.bh.1001-5965.2018.0739
Funds:

National Natural Science Foundation of China 61601318

Shanxi Province Science Foundation for Youths 201601D021078

the Fund of Shanxi Key Subjects Construction 

the Collaborative Innovation Center of Internet+3D Printing in Shanxi Province 

Key Innovation Team of Shanxi 1331 Project 

Scientific and Technological Innovation Team of Shanxi Province 201705D131025

Youth Foundation of Taiyuan University of Science and Technology 20132023

Foundation of China Scholarship Council 

More Information
  • Corresponding author: WU Yingchun, E-mail: yingchunwu3030@foxmail.com
  • Received Date: 18 Dec 2018
  • Accepted Date: 29 Mar 2019
  • Publish Date: 20 Sep 2019
  • Traditional all-in-focus image fusion based on the multi-focus images which are captured by multiple-exposure of the camera. Light field camera has the ability of calculating the refocused images at any depth after a single exposure, which makes it more advantageous in all-in-focus image calculation. A light field all-in-focus image fusion method based on wavelet transform is proposed in this paper. Compared with the spatial image fusion method, the proposed method can effectively avoid the block artifacts and obtain a fused image with high quality. First, the refocused images used for the all-in-focus image calculation can be computed through shearing and projecting the 4D light field captured by the microlens-based light field camera. Then, the wavelet transform are applied to the refocused images and the high-frequency and low-frequency sub-images are extracted respectively. Finally, the balanced Laplace operator and pixel visibility function are proposed to evaluate the sharpness of the sub-image and to get a high-quality fusion image.Compared to the traditional region based sharpness evaluation function, the proposed method has a better performance. The experiment results prove the correctness and validity of the proposed method. The raw images captured by Lytro light field camera are used to calculate the all-in-focus image. Compared with the traditional image fusion methods, the visual effect is better and the quantitative indices are also improved with the proposed method.

     

  • [1]
    NG R.Light field photography with a hand-held plenoptic camera: CSTR 2005-02[R].Stanford: Stanford University, 2005.
    [2]
    NG R.Fourier slice photography[J].ACM Transactions on Graphics, 2005, 24(3):735-744. doi: 10.1145/1073204
    [3]
    TAO M W, HADAP S, MALIK J, et al.Depth from combining defocus and correspondence using light-field cameras[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2013: 673-680.
    [4]
    BOK Y, JEON H G, KWEON I S.Geometric calibration of microlens-based light-field cameras using line features[C]//European Conference on Computer Vision.Berlin: Springer, 2014: 47-61.
    [5]
    YOON Y, JEON H G, YOO D, et al.Light-field image super-resolution using convolutional neural network[J].IEEE Signal Processing Letters, 2017, 24(6):848-852. doi: 10.1109/LSP.2017.2669333
    [6]
    LIU J G.Smoothing filter-based intensity modulation:A spectral preserve image fusion technique for improving spatial details[J].International Journal of Remote Sensing, 2000, 21(18):3461-3472. doi: 10.1080/014311600750037499
    [7]
    Li S T, KANG X D, HU J W.Image fusion with guided filtering[J].IEEE Transactions on Image Processing, 2013, 22(7):2864-2875. doi: 10.1109/TIP.2013.2244222
    [8]
    FEICHTENHOFER C, FASSOLD H, SCHALLAUER P.A perceptual image sharpness metric based on local edge gradient analysis[J].IEEE Signal Processing Letters, 2013, 20(4):379-382. doi: 10.1109/LSP.2013.2248711
    [9]
    QIN X, ZHENG J, HU G, et al.Multi-focus image fusion based on window empirical mode decomposition[J].Infrared Physics & Technology, 2017, 85:251-260.
    [10]
    FAKHARI F, MOSAVI M R, LAJVARDI M M.Image fusion based on multi-scale transform and sparse representation:Image energy approach[J].IET Image Processing, 2017, 11(11):1041-1049. doi: 10.1049/iet-ipr.2017.0104
    [11]
    NAYAR S K, NAKAGAWA Y.Shape from focus[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(8):824-831. doi: 10.1109/34.308479
    [12]
    DENG C, MA W, YIN Y.An edge detection approach of image fusion based on improved Sobel operator[C]//IEEE International Congress on Image and Signal Processing.Piscataway, NJ: IEEE Press, 2011, 3: 1189-1193.
    [13]
    SHRIVAKSHAN G T, CHANDRASEKAR C.A comparison of various edge detection techniques used in image processing[J].International Journal of Computer Science Issues, 2012, 9(5):268-276.
    [14]
    YANG Y, PARK D S, HUANG S, et al.Fusion of MT and MR images using an improved wavelet based method[J].Journal of X-ray Science and Technology, 2010, 18(2):157-170.
    [15]
    HUANG W, JING Z.Evaluation of focus measures in multi-focus image fusion[J].Pattern Recognition Letters, 2007, 28(4):493-500. doi: 10.1016/j.patrec.2006.09.005
  • Relative Articles

    [1]LI Y J,LIU Q,LI W. Impeller fault diagnosis method and application based on digital twin flow field contour of centrifugal pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):193-201 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0997.
    [2]WANG Z Y,XIANG Z R,ZHI J Y,et al. Physiological signal denoising method based on multi-spectrum adaptive wavelet and blind source separation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):910-921 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0179.
    [3]JI L N,GUO X M,YANG F B. Adaptive layered fusion algorithm for infrared and visible video based on possibility theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3021-3031 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0765.
    [4]CHEN Yong, ZHOU FangChun, DONG Ke. Dual discriminator fusion of infrared and visible light images for visual saliency enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0072
    [5]SUN Y B,WANG R,ZHANG Q,et al. A cross-modality person re-identification method for visible-infrared images[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2018-2025 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0554.
    [6]ZHANG Yan, SUN Ming-lei, LIU Zi-yang, SUN Ye-mei, LIU Shu-dong. Infrared image super-resolution based on visible image guidance and recursive fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0590
    [7]LI Shijie, ZHENG Kan, ZHAO Ximeng. Analysis of optical stealth characteristics of satellite[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0517
    [8]SU F,WU S H,LIU Y P. Application of new photoelastic technology based on pixelated polarization camera[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2432-2438 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0667.
    [9]LIU S S,LEI X R,SONG Z Y,et al. Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2919-2929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0713.
    [10]TAN Ziyu, HAN Meng, HAN Xiao, ZHAO Shuo, JIANG Yuhan, LIN Yuzhen. A Method for Analyzing Pressure Fluctuation Signals Based on Wavelet Transform[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0781
    [11]ZHANG M,FAN C G,YU S Q. An elliptical damage detection method using full matrix capture for stiffened plate[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2033-2042 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0568.
    [12]HUANG Y Z,QUAN Y K,XU G Q,et al. Transient heat flow measurement method based on Laplace transform[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3834-3841 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0904.
    [13]YANG Y C,LI X M,DANG J W,et al. Infrared and visible image fusion based on GEMD and improved PCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2317-2329 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0756.
    [14]WANG Zhenyu, XIANG Zerui, ZHI Jinyi, DING Tiecheng, ZOU Rui. Multi-spectrum Adaptive Wavelet Coupling with Blind Source Separation for Physiological Signal Denoising[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0179
    [15]ZHANG J B,XU X B,WANG X,et al. Data processing technology of balanced dynamic characteristics based on wavelet reconstruction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1362-1371 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0441.
    [16]LI J F,ZHAO D Q,WANG D M,et al. A quality evaluation method for wavelet denoising based on combinatorial weighting method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):718-725 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0303.
    [17]WANG Jia-yi, GAO Feng, ZHANG Tian-ge, GAN Yan-hai. Multi-Source Remote Sensing Image Classification Based on Wavelet Transform and Parallel Attention[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0329
    [18]XIE Xue-li, XI Jian-xiang, LU Rui-tao, YANG Xiao-gang, ZHANG Tao, XIA Wen-xin. Dynamic region focusing based infrared long-term object tracking algorithm for Anti-UAV[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0446
    [19]XU N,XU L L,HE F C. Total focusing imaging in anisotropic additive manufacturing components using ultrasonic array[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1063-1070 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0404.
    [20]PENG Yan, GUO Junbin, YU Chuanqiang, KE Bing. Calibration method for high precision camera based on plane transformation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1297-1303. doi: 10.13700/j.bh.1001-5965.2021.0015
  • Cited by

    Periodical cited type(10)

    1. 黄泽丰,杨莘,邓慧萍,李青松. 基于MDLatLRR和KPCA的光场图像全聚焦融合. 光子学报. 2023(04): 255-269 .
    2. 张铮,王孙强,熊盛辉,胡凌辉,胡新宇. 结合小波变换和CLAHE的图像增强算法. 现代电子技术. 2022(03): 48-51 .
    3. 卢泉,杨振华,黄粒峰. 改进最佳缝合线的红外图像拼接方法. 红外技术. 2022(06): 580-586 .
    4. 辛建英,元泽怀,潘志方. 双棱镜干涉物理实验中测量光场相干性研究. 激光杂志. 2021(05): 41-45 .
    5. 常奇志,王志琼,兰华,翁小辉. 街景动态图像虚拟拼接仿真方法研究. 计算机仿真. 2021(11): 394-398 .
    6. 车畅,兰文宝. Canny算法和中值滤波法的红外全景图像拼接. 激光杂志. 2020(05): 109-113 .
    7. 刘小利. 基于深度学习算法的图像融合. 国外电子测量技术. 2020(07): 38-42 .
    8. 武迎春,王玉梅,王安红,赵贤凌. 基于边缘增强引导滤波的光场全聚焦图像融合. 电子与信息学报. 2020(09): 2293-2301 .
    9. 苏博妮. 基于梯度域的光场全聚焦图像生成方法. 西南大学学报(自然科学版). 2020(10): 174-182 .
    10. 陈俊英,崔长彩. 钎焊磨粒测量系统中的显微图像快速融合. 华侨大学学报(自然科学版). 2019(05): 561-566 .

    Other cited types(8)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(848) PDF downloads(288) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return