Citation: | WU Shitong, YAN Yong, QIAN Xiangchenet al. Experimental study on mass flow measurement of solid particles using electrostatic sensors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1575-1581. doi: 10.13700/j.bh.1001-5965.2018.0750(in Chinese) |
The monitoring of solid particles in the aero-engine gas path and exhaust emissions improves the ability of fault identification and early warning of related equipment. Three different types of electrostatic sensors are used in this study to measure the mass flow of solid particles in square gas-solid path and the measurement results are compared and analyzed. The experimental tests were conducted under sixteen dilute phase conditions of four conveying gas velocities and four mass flow of solid particles. The magnitude of electrostatic signals and the velocity of particles are used to evaluate the mass flow of particles under all the test conditions. The comparison results show that the square ring electrostatic electrode array has the highest average measurement standard deviation, the intrusive strip electrostatic electrode array has the smallest one under low mass flow rate conditions. The non-intrusive strip electrostatic sensor provides the best measurement performance (the lowest standard deviation) when the mass flow is high.
[1] |
CHEN Z S, TANG X, HU Z, et al.Investigations into sensing characteristics of circular thin-plate electrostatic sensors for gas path monitoring[J]. Chinese Journal of Aeronautics, 2014, 27(4):812-820. doi: 10.1016/j.cja.2014.03.019
|
[2] |
SUN J Z, ZUO H F, LIU P P, et al.Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal[J]. Measurement Science and Technology, 2013, 24(12):125107. doi: 10.1088/0957-0233/24/12/125107
|
[3] |
WEN Z H, HOU J X, ATKIN J.A review of electrostatic monitoring technology:The state of the art and future research derections[J]. Progress in Aerospace Sciences, 2017, 94(6):1-11.
|
[4] |
ZHENG Y, LIU Q.Review of techniques for the mass flow rate measurement of pneumatically conveyed solids[J]. Measurement, 2011, 44(4):589-604. doi: 10.1016/j.measurement.2011.01.013
|
[5] |
YAN Y.Mass flow measurement of bulk solids in pneumatic pipelines[J]. Measurement Science and Technology, 1996, 7(12):1687-1706. doi: 10.1088/0957-0233/7/12/002
|
[6] |
WEN Z H, MA X J, ZUO H F.Characteristics analysis and experiment verification of electrostatic sensor for areo-engine exhaust gas monitoring[J]. Measurement, 2014, 47(1):633-644.
|
[7] |
TANG X, CHEN Z S, LI Y, et al.Analysis of the dynamic sensitivity of hemisphere-shaped electrostatic sensor's circular array for charged particle monitoring[J]. Sensors, 2016, 16(9):1403. doi: 10.3390/s16091403
|
[8] |
ADDABBO T, FORT A, GARBIN R, et al.Theoretical characterization of a gas path debris detection monitoring system based on electrostatic sensors and charge amplifiers[J]. Measurement, 2015, 64(1):138-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2810e07c0f75bcb1d10863bbaa95c928
|
[9] |
LI J, FU F F, LI S, et al.Velocity characterization of dense phase pneumatically conveyed solid particles in horizontal pipeline through an integrated electrostatic sensor[J]. International Journal of Multiphase Flow, 2015, 76:198-211. doi: 10.1016/j.ijmultiphaseflow.2014.11.004
|
[10] |
COOMBES J R, YAN Y.Measurement of velocity and concentration profiles of pneumatically conveyed particles using an electrostatic sensor array[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(5):1139-1148. doi: 10.1109/TIM.2015.2494620
|
[11] |
MURNANE S N, BARNES R N, WOODHEAD S R, et al.Electrostatic modelling and measurement of airborne particle concentration[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(2):488-492. doi: 10.1109/19.492773
|
[12] |
PENG L H, ZHANG Y, YAN Y.Characterization of electrostatic sensors for flow measurement of particulate solids in square-shaped pneumatic conveying pipelines[J]. Sensors and Actuators A:Physical, 2008, 141(1):59-67. doi: 10.1016/j.sna.2007.07.021
|
[13] |
JURJEVČIČ B, SENEGAČNIK A, DROBNIČ B, et al.The characterization of pulverized-coal pneumatic transport using an array of intrusive electrostatic sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12):3434-3443. doi: 10.1109/TIM.2015.2465731
|
[14] |
ZHANG S, YAN Y, QIAN X C, et al.Mathematical modeling and experimental evaluation of electrostatic sensor arrays for the flow measurement of fine particles in a square-shaped pipe[J]. IEEE Sensors Journal, 2016, 16(23):8531-8541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c180d9746c079ad2eb49bd8e4baabee0
|
[15] |
QIAN X C, YAN Y, SHAO J Q, et al.Quantitative characterization of pulverized coal and biomass-coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques[J]. Measurement Science and Technology, 2012, 23(8):085307. doi: 10.1088/0957-0233/23/8/085307
|
[16] |
ZHANG S, QIAN X C, YAN Y, et al.Characterisation of pulverized fuel flow in a square-shaped pneumatic conveying pipe using electrostatic sensor arrays[C]//Proceeding of IEEE Instrumentation and Measurement Technology Conference.Piscataway, NJ: IEEE Press, 2016: 601-605.
|
[17] |
ZHANG J Y.Air-solids flow measurement using electrostatic techniques[M]//CANBOLAT H.Electrostatics.London: IntechOpen, 2012: 61-80.
|