Citation: | ZHAO Jing, GUAN Xin, LIU Haiqiaoet al. A new conflict evidence decision method and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1838-1847. doi: 10.13700/j.bh.1001-5965.2018.0787(in Chinese) |
Research on conflict evidence decision methods is an important research topic of evidence theory. In view of the existing problems in the evidence theory improvement process, such as large computational complexity, unreasonable normalization process and unsatisfactory evidence combination, this paper proposes a method based on quadratic combination for conflict evidence decision-making. Firstly, the paper proposes a new flowchart of conflict evidence decision method based on quadratic combination. Secondly, a new multiplicative normalization rule is proposed, and a new multiplicative normalization rule is analyzed by example to verify its rationality. Finally, the shortcomings of the existing conflict measurement function are analyzed, a new conflict measurement function is proposed, and the rationality of the conflict measurement function is analyzed. Through the analysis of examples and the comparison with the existing evidence combination rules, it is shown that the proposed method not only improves the calculation amount, but also improves the combination results.
[1] |
DEMPSTER A P.Upper and lower probabilities induced by a multivalued mapping[J].Annals of Mathematical Statistics, 1967, 38(2):325-339. doi: 10.1214/aoms/1177698950
|
[2] |
SHAFER G.A mathematical theory of evidence[M].Princeton:Princeton University Press, 1976:85-150.
|
[3] |
XU Z, HU C, YANG F, et al.Data-driven inter-turn short circuit fault detection in induction machines[J].IEEE Access, 2017, 5:25055-25068. doi: 10.1109/ACCESS.2017.2764474
|
[4] |
WANG X, YANG F, WEI H, et al.A risk assessment model of uncertainty system based on set-valued mapping[J].Journal of Intelligent and Fuzzy Systems, 2016, 31(6):3155-3162. doi: 10.3233/JIFS-169201
|
[5] |
ZHANG X, MAHADEVAN S, DENG X.Reliability analysis with linguistic data:An evidential network approach[J].Reliability Engineering and System Safety, 2017, 162:111-121. doi: 10.1016/j.ress.2017.01.009
|
[6] |
JIANG W, XIE C, ZHUANG M, et al.Failure mode and effects analysis based on a novel fuzzy evidential method[J].Applied Soft Computing, 2017, 57:672-683. doi: 10.1016/j.asoc.2017.04.008
|
[7] |
HAN D, DEZERT J, YANG Y.Belief interval-based distance measures in the theory of belief functions[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 99:1-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf1780050aa2931bc855837e35c9b3c4
|
[8] |
QIAN J, GUO X F, DENG Y.A novel method for combining conflicting evidences based on information entropy[J].Applied Intelligence, 2017, 46(4):876-888. doi: 10.1007/s10489-016-0875-y
|
[9] |
YU C, YANG J, YANG D, et al.An improved conflicting evidence combination approach based on a new supporting probability distance[J].Expert Systems with Applications, 2015, 42(12):5139-5149. doi: 10.1016/j.eswa.2015.02.038
|
[10] |
SMARANDACHE F, DEZERT J.Modified PCR rules of combination with degrees of intersections[C]//International Conference on Information Fusion.Piscataway, NJ: IEEE Press, 2015: 2100-2107.
|
[11] |
JIANG W, LUO Y, QIN X, et al.An improved method to rank generalized fuzzy numbers with different left heights and right heights[J].Journal of Intelligent and Fuzzy Systems, 2015, 28(5):2343-2355. doi: 10.3233/IFS-151639
|
[12] |
JIANG W, WEI B, QIN X, et al.Sensor data fusion based on a new conflict measure[J].Mathematical Problems in Engineering, 2016, 2016:5769061.
|
[13] |
ZADEH L A.A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination[J].AI Magazine, 1986, 7(2):85-90. http://dl.acm.org/citation.cfm?id=13443
|
[14] |
LIU Z G, DEZERT J, PAN Q, et al.Combination of sources of evidence with different discounting factors based on a new dissimilarity measure[J].Decision Support Systems, 2011, 52(1):133-141. doi: 10.1016/j.dss.2011.06.002
|
[15] |
MARTIN A, JOUSSELME A L, OSSWALD C.Conflict measure for the discounting operation on belief functions[C]//International Conference on Information Fusion.Piscataway, NJ: IEEE Press, 2008: 1-8.
|
[16] |
YANG Y, HAN D, HAN C.Discounted combination of unreliable evidence using degree of disagreement[J].International Journal of Approximate Reasoning, 2013, 54(8):1197-1216. doi: 10.1016/j.ijar.2013.04.002
|
[17] |
DENG X Y, HU Y, DENG Y, et al.Environmental impact assessment based on D numbers[J].Expert Systems with Applications, 2014, 41(2):635-643. doi: 10.1016/j.eswa.2013.07.088
|
[18] |
FEI L G, HU Y, XIAO F Y, et al.A modified TOPSIS method based on D numbers and its applications in human resources selection[J].Mathematical Problems in Engineering, 2016, 2016:6145196. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004637719
|
[19] |
BIAN T, ZHENG H Y, YIN L K, et al.Failure mode and effects analysis based on D numbers and TOPSIS[J].Knowledge-based Systems, 2016, 2016:1-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe09587832848b75d72fee89a7aaef40
|
[20] |
SU X Y, MAHADEVAN S, XU P D, et al.Dependence assessment in human reliability analysis based on D numbers and AHP[J].Risk Analysis, 2015, 35(7):1296-1316. doi: 10.1111/risa.2015.35.issue-7
|
[21] |
DENG X Y, HU Y, DENG Y.Supplier selection using AHP methodology extended by D numbers[J].Expert Systems with Applications, 2014, 41(1):156-167. doi: 10.1016/j.eswa.2013.07.018
|
[22] |
FANG C, ZHONG D H, YAN F G, et al.A hybrid fuzzy evaluation method for curtain grouting efficiency assessment based on an AHP method extended by D numbers[J].Expert Systems with Applications, 2016, 44(1):289-303. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6adcda7336749af1293cbfca2c883cb2
|
[23] |
DENG X Y, LU X, CHAN F T, et al.D-CFPR:D numbers extended consistent fuzzy preference relations[J].Knowledge-based Systems, 2015, 73:61-68. doi: 10.1016/j.knosys.2014.09.007
|
[24] |
ZHOU X Y, SHI Y Q Y, DENG Y, et al.D-DEMATEL:A new method to identify critical success factors in emergency management[J].Safety Science, 2017, 91:93-104. doi: 10.1016/j.ssci.2016.06.014
|
[25] |
LIU W.Analyzing the degree of conflict among belief functions[J].Artificial Intelligence, 2006, 170(11):909-924. doi: 10.1016/j.artint.2006.05.002
|
[26] |
KHATIBI V, MONTAZER G A.A new evidential distance measure based on belief intervals[J].Scientia Iranica, 2010, 17(2):119-132.
|
[27] |
CHEN J, YE F, JIANG T, et al.Conflicting information fusion based on an improved DS combination method[J].Symmetry, 2017, 9(11):278. doi: 10.3390/sym9110278
|
[28] |
HÖHLE U.Entropy with respect to plausibility measures[C]//Proceedings of the 12th IEEE International Symposium on Multiple-Valued Logic.Piscataway, NJ: IEEE Press, 1982: 167-169.
|
[29] |
YAGER R R.Entropy and specificity in a mathematical theory of evidence[J].International Journal of General Systems, 2008, 219(4):291-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/03081078308960825
|
[30] |
KLIR G J, RAMER A.Uncertainty in the Dempster-Shafer theory:A critical re-examination[J].International Journal of General Systems, 1990, 18(2):155-166. doi: 10.1080/03081079008935135
|
[31] |
KLIR G J, PARYIZ B.A note on the measure of discord[C]//8th International Conference on Uncertainty in Artificial Intelligence.San Francisco: Morgan Kaufmann Publishers Inc., 1992: 138-141.
|
[32] |
HARMANEC D, KLIR G J.Measuring total uncertainty in Dempster-Shafer theory:A novel approach[J].International Journal of General Systems, 1994, 22(4):405-419. doi: 10.1080/03081079408935225
|
[33] |
JOUSSELME A L, LIU C, GRENIER D, et al.Measuring ambiguity in the evidence theory[J].IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2006, 36(5):890-903. doi: 10.1109/TSMCA.2005.853483
|
[34] |
DENG Y.Deng entropy:A generalized Shannon entropy to measure uncertainty[J].Chaos, Solitons & Fractals, 2016, 91:549-553. http://www.sciencedirect.com/science/article/pii/S0960077916302363
|
[35] |
JOUSSELME A L, GRENIER D, BOSSÉ É.A new distance between two bodies of evidence[J].Information Fusion, 2001, 2(2):91-101. doi: 10.1016/S1566-2535(01)00026-4
|
[36] |
DING J, HAN D, DEZERT J, et al.Comparative study on BBA determination using different distances of interval numbers[C]//International Conference on Information Fusion.Piscataway, NJ: IEEE Press, 2017: 1-6.
|
[37] |
YANG Y, HAN D, DEZERT J, et al.Comparative study of focal distance measures in theory of belief functions[C]//International Conference on Information Fusion.Piscataway, NJ: IEEE Press, 2017: 979-984.
|
[38] |
ZHOU D, PAN Q, CHHIPI-SHRESTHA G, et al.A new weighting factor in combining belief function[J].PLOS ONE, 2017, 12(5):e0177695. doi: 10.1371/journal.pone.0177695
|
[39] |
YANG Y, HAN D.A new distance-based total uncertainty measure in the theory of belief functions[J].Knowledge-Based Systems, 2016, 94:114-123. doi: 10.1016/j.knosys.2015.11.014
|