Citation: | LI Haoruo, HE Feng, ZHENG Zhong, et al. Time-triggered communication scheduling method based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1894-1901. doi: 10.13700/j.bh.1001-5965.2018.0789(in Chinese) |
In the future, time-triggered communication mechanism will be more widely selected for information transmission to ensure the certainty of information interaction in avionics system. How to reasonably implement time-triggered communication scheduling design is the key to time-triggered application to avionics interconnection systems. For the periodic task of time-triggered scheduling, we proposed a method for generating periodic scheduling timetable based on reinforcement learning. Firstly, the traffic scheduling task is transformed into a tree search problem, which has the Markov characteristics needed for reinforcement learning. Then, the reinforcement learning algorithm based on neural network is used to explore the schedule, and the waiting time is shortened to optimize the schedule. As the training is completed, the model can be directly used in tasks with similar message distribution. Compared with the method, e.g. Yices, which uses the satisfiability modulo theories (SMT) to solve the time-triggered schedule, the proposed method does not cause undetermined problem, and can guarantee the correctness and optimization of the time-triggered scheduling design results. For a large network with 1 000 messages, the calculation speed of the proposed method is dozens of times faster than that of the SMT, and meanwhile, the end-to-end delay of the generated message by scheduling is less than 1% of that of the SMT, which greatly improves the timeliness of message transmission.
[1] |
王国庆, 谷青范, 王淼, 等.新一代综合化航空电子系统构架技术研究[J].航空学报, 2014, 35(6):1473-1486. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201406002
WANG G Q, GU Q F, WANG M, et al.Research on architecture technology for new generation integrated avionics system[J].Acta Aeronautica et Aastronautica Sinica, 2014, 35(6):1473-1486(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201406002
|
[2] |
熊华钢, 王中华.先进航空电子综合技术[M].北京:国防工业出版社, 2009:2-13.
XIONG H G, WANG Z H.Advanced avionics integration techniques[M].Beijing:National Defense Industry Press, 2009:2-13(in Chinese).
|
[3] |
STEINER W.An evaluation of SMT-based schedule synthesis for time-triggered multi-hop networks[C]//Real-Time Systems Symposium.Piscataway, NJ: IEEE Press, 2011: 375-384.
|
[4] |
孔韵雯, 李峭, 熊华钢, 等.片间综合化互连时间触发通信调度方法[J].航空学报, 2018, 39(2):321590. http://d.old.wanfangdata.com.cn/Periodical/hkxb201802023
KONG Y W, LI Q, XIONG H G, et al.Time-triggered communication scheduling method for off-chip integrated interconnection[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(2):321590(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201802023
|
[5] |
李炳乾, 王勇, 谭小虎, 等.基于混合遗传算法的TTE静态调度表生成设计[J].电子技术应用, 2016, 42(10):96-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzjsyy201610029
LI B Q, WANG Y, TAN X H, et al.Hybrid-GA based static schedule generation for time-triggered Ethernet[J].Application of Electronic Technique, 2016, 42(10):96-99(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzjsyy201610029
|
[6] |
RUMELHART D E, HINTON G E, WILLIAMS R J.Learning representations by back-propagating errors[J].Nature, 1986, 323:533-536. doi: 10.1038/323533a0
|
[7] |
KHALIL E B, DAI H, ZHANG Y, et al.Learning combinatorial optimization algorithms over graphs[C]//Neural Information Processing Systems, 2017: 6348-6358.
|
[8] |
SILVER D, SCHRITTWIESER J, SIMONYAN K, et al.Mastering the game of Go without human knowledge[J].Nature, 2017, 550(7676):354-359. doi: 10.1038/nature24270
|
[9] |
GAL D, KRISHNAMURTHY D, MATEJ V, et al.Safe exploration in continuous action spaces[EB/OL].(2018-01-26)[2019-01-01].https://arxiv.org/abs/1801.08757.
|
[10] |
KOCSIS L, SZEPESVARI C.Bandit based monte-carlo planning[C]//European Conference on Machine Learning, 2006: 282-293.
|
[11] |
CRACIUNAS S S, OLIVER R S.SMT-based task-and network-level static schedule generation for time-triggered networked systems[C]//International Conference on Real-Time Networks and Systems, 2014: 45-54.
|
[12] |
SCHULMAN J, LEVINE S, ABBEEL P, et al.Trust region policy optimization[EB/OL].(2015-02-19)[2019-01-01].https://arxiv.org/ahs/1502.05477.
|
[13] |
SILVER D, LEVER G, HEESS N, et al.Deterministic policy gradient algorithms[C]//International Conference on Machine Learning, 2014: 387-395.
|
[14] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al.Proximal policy optimization algorithms[EB/OL].(2017-07-20)[2019-01-01].https://arxiv.org/abs/1707.06347.
|
[15] |
KORF R E.Depth-first iterative-deepening:An optimal admissible tree search[J].Artificial Intelligence, 1985, 27(1):97-109.
|
[16] |
ARINC.Aircraft data network, Part 7.Avionics full-duplex switched ethernet network: ARINC 664P7[R].Washington, D.C.: ARINC, 2005.
|